Полиплоидия. Типы фибробластов

Фибробласты (фибробластоциты) (от лат. fibra - волокно, греч. blastos - росток, зачаток) - клетки, синтезирующие компоненты межклеточного вещества: белки (например, коллаген, эластин), протеогликаны, гликопротеины.

В эмбриональном периоде ряд мезенхимных клеток зародыша дают началодифферону фибробластов , к которому относят:

· стволовые клетки,

· полустволовые клетки-предшественники,

· малоспециализированные фибробласты,

· дифференцированные фибробласты (зрелые, активно функционирующие),

· фиброциты (дефинитивные формы клеток),

· миофибробласты и фиброкласты.

С главной функцией фибробластов связаны образование основного вещества и волокон (что ярко проявляется, например, при заживлении ран, развитии рубцовой ткани, образовании соединительнотканной капсулы вокруг инородного тела).

Малоспециализированные фибробласты - это малоотростчатые клетки с округлым или овальным ядром и небольшим ядрышком, базофильной цитоплазмой, богатой РНК. Размер клеток не превышает 20-25 мкм. В цитоплазме этих клеток обнаруживается большое количество свободных рибосом. Эндоплазматическая сеть и митохондрии развиты слабо. Аппарат Гольджи представлен скоплениями коротких трубочек и пузырьков.
На этой стадии цитогенеза фибробласты обладают очень низким уровнем синтеза и секреции белка. Эти фибробласты способны к размножению митотическим путем.

Дифференцированные зрелые фибробласты крупнее по размеру. Это активно функционирующие клетки.

В зрелых фибробластах осуществляется интенсивно биосинтез коллагеновых, эластиновых белков, протеогликанов, которые необходимы для формирования основного вещества и волокон. Эти процессы усиливаются в условиях пониженной концентрации кислорода. Стимулирующими факторами биосинтеза коллагена являются также ионы железа, меди, хрома, аскорбиновая кислота. Один из гидролитических ферментов -коллагеназа - расщепляет внутри клеток незрелый коллаген, что регулирует на клеточном уровне интенсивность секреции коллагена.

Фибробласты – это подвижные клетки. В их цитоплазме, особенно в периферическом слое, располагаются микрофиламенты, содержащие белки типа актина и миозина. Движение фибробластов становится возможным только после их связывания с опорными фибриллярными структурами с помощью фибронектина - гликопротеина, синтезируемого фибробластами и другими клетками, обеспечивающего адгезию клеток и неклеточных структур. Во время движения фибробласт уплощается, а его поверхность может увеличиться в 10 раз.

Плазмолемма фибробластов является важной рецепторной зоной, которая опосредует воздействие различных регуляторных факторов. Активизация фибробластов обычно сопровождается накоплением гликогена и повышенной активностью гидролитических ферментов. Энергия, образуемая при метаболизме гликогена, используется для синтеза полипептидов и других компонентов, секретируемых клеткой.


По способности синтезировать фибриллярные белки к семейству фибробластов можно отнести ретикулярные клетки ретикулярной соединительной ткани кроветворных органов, а также хондробласты и остеобласты скелетной разновидности соединительной ткани.

Фиброциты - дефинитивные (конечные) формы развития фибробластов. Эти клетки веретенообразные с крыловидными отростками. [Они содержат небольшое число органелл, вакуолей, липидов и гликогена.] Синтез коллагена и других веществ в фиброцитах резко снижен.

Миофибробласты - клетки, сходные с фибробластами, сочетающие в себе способность к синтезу не только коллагеновых, но и сократительных белков в значительном количестве. Фибробласты могут превращаться в миофибробласты, функционально сходные с гладкими мышечными клетками, но в отличие от последних имеют хорошо развитую эндоплазматическую сеть. Такие клетки наблюдаются в грануляционной ткани заживающих ран и в матке при развитии беременности.

Фиброкласты - клетки с высокой фагоцитарной и гидролитической активностью, принимают участие в «рассасывании» межклеточного вещества в период инволюции органов (например, в матке после окончания беременности). Они сочетают в себе структурные признаки фибриллообразующих клеток (развитую гранулярную эндоплазматическую сеть, аппарат Гольджи, относительно крупные, но немногочисленные митохондрии), а также лизосомы с характерными для них, гидролитическими ферментами. Выделяемый ими за пределы клетки комплекс ферментов расщепляет цементирующую субстанцию коллагеновых волокон, после чего происходят фагоцитоз и внутриклеточное переваривание коллагена.

Следующие клетки волокнистой соединительной ткани уже не относятся к дифферону фибробластов.

ПОЛИПЛОИД- организм, происходящий от одной или двух родительских форм путем удвоения числа хромосом. Явление увеличения числа хромосом наз. полиплоидией. Это удвоение может быть спонтанным или искусственно индуцированным. Впервые явление полиплоидии было открыто И.И.Герасимовым в 1890г.

ПОЛИПЛОИДИЯ- это увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации . Половые клетки большинства организмов гаплоидны (содержат один набор хромосом – n), соматические – диплоидны (2n).

Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора – триплоид (3n), четыре – тетраплоид (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, – тетраплоиды, гексаплоиды (6 n) и т. д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом – не кратный гаплоидному.

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе . В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид.

Полиплоидные клетки могут возникнуть в организме при незавершённом митозе : после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой – триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.

Полиплоидия широко распространена в природе, но среди разных групп организмов представлена неравномерно. Большое значение этот тип мутаций имел в эволюции диких и культурных цветковых растений, среди которых ок. 47 % видов – полиплоиды. Высокая степень плоидности свойственна простейшим – число наборов хромосом у них может возрастать в сотни раз. Среди многоклеточных животных полиплоидия редка и более характерна для видов, утративших нормальный половой процесс, – гермафродитов (см.Гермафродитизм ), напр. земляных червей, и видов, у которых яйцеклетки развиваются без оплодотворения (см. Партеногенез ), напр. некоторых насекомых, рыб, саламандр. Одна из причин, по которой полиплоидия у животных встречается значительно реже, чем у растений, заключается в том, что у растений возможно самоопыление, а большинство животных размножается путём перекрёстного оплодотворения, и, значит, возникшему мутанту-полиплоиду нужна пара – такой же мутант-полиплоид другого пола. Вероятность подобной встречи крайне низка. Довольно часто у животных бывают полиплоидными клетки отдельных тканей (напр., у млекопитающих – клетки печени).

Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях.

Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала. С этой целью используют специальные мутагены (напр., алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе. Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и др. культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам.

Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным ещё в 1-й пол. 20 в. впервые получить плодовитые полиплоидные гибриды растений (Г.Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б.Л. Астауров, гибрид-тетраплоид тутового шелкопряда).

(Полиплоидные ряды)

Различают:

-автополиплоидию (кратное увеличение числа наборов хромосом одного вида), характерную, как правило, для видов с вегетативным способом размножения (автополиплоиды стерильны в связи с нарушением конъюгации гомологичных хромосом в процессе мейоза),

-аллополиплоидию суммирование в организме числа хромосом от разных видов), при крой обычно происходит удвоение числа хромосом у бесплодного диплоидного гибрида, и он становится в результате этого плодовитым.

- эндополиплоэдию- простое увеличение числа хромосом в одной клетке или в клетках целой ткани (тапетум).

Как видно из схемы, митотическая полиплоидизация происходит в результате удвоения числа хромосом в соматической клетке без последующего образования клеточной перегородки. При зиготоческой полиплоидизации образование зигот идет нормально, но первое деление по типу митоза не сопровождается разделением ее на две клетки. В результате клетки образовавшегося зародыша будут иметь двойной набор хромосом (4х). И наконец, мейотическая полиплоидизация имеет место при отсутствии редукции числа хромосом в генеративных клетках (яйцеклетка, спермии).

Спонтанная полиплоидизация- явление очень редкое. В исследованиях для получения полиплоидов использовали чаще всего тепловой шок и закись азота. Однако подлинный прогресс в изучении полиплоидии был достигнут после открытия Блексли и др. в 1937г. алкалоида колхоцина (С 22 Н 26 О 6), получаемого из безвременника. С тех пор, он с успехом применяется для получения полиплоидов у сотни видов растений. Колхицин воздействует на веретено деления в клетке, препятствуя расхождению хромосом к полюсам на стадии анафазы, способствуя таким образом удвоению их числа в ядре: см. рис.

Воздействию колхицином подвергают апикальные меристемы, что позволяет получать вполне плодовитые формы растений с удвоенным числом хромосом.

Полиплоидия имеет важное значение в эволюции культурных и дикорастущих растений (полагают, что около трети всех видов растений возникли за счёт П.), а также нек-рых групп животных (преим. партеногенетических). Полиплоиды часто характеризуются крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам внеш. среды и др. хозяйственно полезными признаками. Они представляют важный источник изменчивости и м. б. использованы как исходный материал для селекции (на основе П. созданы высокоурожайные сорта с.-х. растений, устойчивые к болезням). В широком смысле под термином «П.» понимают как кратное (эуплоидия), так и некратное (анеуплоидия) изменение числа хромосом в клетках организма.

· А́втополиплоиди́я - наследственное изменение, кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида. На основе искусственной автополиплоидии синтезированы новые формы и сорта ржи, гречихи, сахарной свёклы и других растений.

Автополиплоид - это организм, возникший путем спонтанного или индуцированного прямого увеличения числа хромосом вдвое. Увеличение числа хром-ом в кл.автополиплоидов приводит к увеличению размеров ядра и кл. в целом. Это влечет за собой увеличение размеров устьиц, волосков, сосудов, цветков, листьев, пыльцевых зерен и т.д. Увеличение числа хро-ом связано с укрупнением всего растения в целом и отдельных его органов.

К физиологическим особенностям автополиплоидов следует отнести:

Замедление клеточного деления

Увеличение вегетационного периода

Низкое осмотическое давление

Понижение устойчивости к абиотическим факторам внешней среды и др.

Как правило, автополиплоиды отличаются пониженной плодовитостью (связано это с особенностями мейоза).

Наследование признаков у автополиплоидов и диплоидов так же отличается, так как в геноме первых каждый ген представлен в четырех дозах. Поэтому, например, гетерозиготный тетраплоид ААаа при полной доминантности образует следующие гаметы: 1АА+4Аа+1аа. Соотношение (число) гамет определенного типа зависит от вероятности конъюгации хро-м, несущих гены А и а:

Эти пять генотипов получили название:

- квадриплекс (АААА)

- триплекс (АААа)

- дуплекс (ААаа)

- симплекс (Аааа)

- нулиплекс (аааа)

Согласно дозе доминантных аллелей. В целом соотношение будет 35:1, в отличии от менделевского расщепления при моногибридном скрещивании у диплоидов, равного 3:1.

В дикой природе, а также в культуре, автополиплоиды изолированы от диплоидов барьером не скрещиваемости, определяемой обычно отсутствием нормального прорастания пыльцевых трубок на рыльце пестиков, нарушением развития зародыша и эндосперма.

Увеличение размеров растений, крупности цветков, семян и т.д. привело к использованию автополиплоидов в декоративном цветоводстве (сорта хризантем, астр и т.д.) и селекции полевых зерновых и кормовых культур.

· А́ллополиплоиди́я - кратное увеличение количества хромосом у гибридных организмов. Возникает при межвидовой и межродовой гибридизации.

Аллоплоид- это организм, возникший в результате объединения хромосомных наборов разных видов.

Один из первых таких гибридов был получен Г.Д. Карпеченко при скрещивании редьки с капустой. Оба вида имеют диплоидное число хро-м =18, и относятся к разным родам. Обычно получаемые растения стерильны, но в этом случае спонтанно объединились гаметы с нередуцированным числом хром-м, в результате чего было получено плодовитое растение с 2n=36 (18+18). Оно получило название редично-капустный гибрид.С открытием колхицина, получение подобных гибридов не предоставляет проблемы.

АНЕУПЛОИДИЯ.

Анеуплоид- это организм с увеличенным или уменьшенным, не кратным гаплоидному числом хром-м. наиболее часто встречаются следующие типы анеуплоидов:

Нуллисомики 2n-2

Моносомики 2n-1

Трисомики 2n+1

Тетрасомики 2n+2

Моносомики, у кот. Не хватает одной хром-мы (2n-1), и нуллисомики (2n-2) у большинства растений не выживают.

Нуллисомики получаются при самоопылении моносомиков. У этих растений отсутствуют оба гомолога определённой хромосомы.

У моносомиков понижена фертильность. Это объясняется тем, что мужские гаметы (n-1) практически не выживают, а из яйцеклеток выживает меньше половины.

Трисомики (2n+1), получают скрещивая триплоиды с диплоидами. При этом трисомики выживают и у растений с небольшим числом хром-м, тогда как моносомики у этих растений полностью не жизнеспособны.

Гаплоидия.

Гаплоид- организм, содержащий в соматических клетках полный для данного вида набор не гомологичных хром-м (n). По внешнему виду гаплоиды соответствуют диплоидным растениям, но значительно мельче, т.к. имеют мелкие клетки с небольшими ядрами.

№ 52 ОТДАЛЕННАЯ ГИБРИДИЗАЦИЯ.

А рабский поэт XI века Аль-Маарри воскликнул однажды с горечью: «Нам кажется, юности нет износа, но катятся годы камнями с откоса». С тех пор минули столетия. Ученые и медики не тратили время впустую: они трудились, чтобы подарить человечеству методики, способные замедлить процесс старения. Одной из самых совершенных омолаживающих технологий является терапия фибробластами – надежная и безопасная процедура, обеспечивающая поразительный результат. Она позволяет вернуть весну жизни – время, когда мы превосходно выглядим даже после бессонной ночи. Если Ваша кожа требует истинного омоложения, а Вы хотите с каждым днем выглядеть все моложе, достичь желаемого результата помогут современные клеточные технологии.

П ередовые клиники Европы и США уже давно взяли на вооружение прогрессивную методику омоложения фибробластами. За последние 7 лет несколько тысяч американцев участвовали в клинических испытаниях этой технологии, которые показали поразительный эффект омоложения, наступающий у некоторых пациентов уже через несколько недель, у других – только через несколько месяцев. После введения фибробластов пациенты отмечают длительное улучшение качества кожи, позитивные эффекты которого накапливаются до 18-24 месяцев и остаются стабильными 7 лет и более. Результаты исследований оказались настолько убедительными, что процедура была одобрена многими авторитетными медицинскими институтами (например, МСА (Агентство Контроля и управления Лекарств)).

Е ще недавно нашим соотечественникам приходилось отправляться в Англию, Швейцарию или Соединенные Штаты и платить там огромные суммы денег, чтобы пройти курс клеточной терапии. Сегодня процедуры с применением аутологичных фибробластов доступны и в России.

И сследованиям фибробластов в нашей стране посвящена не одна докторская диссертация, их изучением занимаются многие серьезные медучреждения (например, Институт хирургии им. А. В. Вишневского РАМН). Почему же эти клетки человеческого организма вызывают столь сильный интерес ученых? Все дело в их беспрецедентном омолаживающем потенциале. В них таится та самая волшебная формула вечной юности, которую люди пытались вывести в течение многих столетий.


Что такое фибробласты и для чего они нужны?

Слово фибробласт содержит два корня – «fibra», что в переводе означает «волокно», и «blastos» – «росток». Фибробласты – это клетки соединительной ткани, которые имеют ядро и характеризуются округлой или веретенообразной формой и множеством отростков. Это наиболее ценные клетки среднего слоя кожи (дермы), входящие в состав стромально-васкулярной фракции, принципиально разделяющейся на 2 группы:

1. Васкулярные (сосудистые) клетки: эндотелиальные, перициты, гладкомышечные, циркулирующие клетки крови – эритроциты, лейкоциты, моноциты, макрофаги, Т-лимфоциты, преадипоциты.

2. Фибробластоподобные клетки, к которым относятся непосредственно фибробласты и их предшественники – стромальные (они же мультипотентные, мезенхимальные) стволовые клетки.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

Исходя из вышеприведенной классификации, становится понятно, что фибробласты – это не стволовые клетки, а их более зрелые и высокоорганизованные последователи. В отличие от стволовых клеток, которые могут дать начало клеткам любой ткани нашего организма, фибробласты могут превратиться только в малоактивный фиброцит.

Без фибробластов сохранение структурной целостности соединительной ткани не представлялось бы возможным, поэтому роль фибробластов трудно переоценить – это мощные фабрики, которые вырабатывают и постоянно обновляют структурные компоненты дермы и межклеточного вещества, а также множество биологически активных веществ, влияющих на процессы регенерации:

1. Именно фибробласты синтезируют составные компоненты соединительной ткани, ради воспроизводства которых разрабатываются самые современные и высокотехнологичные косметологические процедуры. Речь идет о коллагене, эластине и гиалуроновой кислоте – натуральных веществах дермы, обеспечивающих ее тургор, упругость, эластичность и увлажненность. Благодаря фибробластам вырабатываются также протеогликан, фибронектин, хондроитинсульфат, ламинин и другие элементы межклеточного матрикса, отвечающие за красоту и здоровье кожи.

2. Фибробласты постоянно обновляют дерму и не позволяют накапливаться в ней поврежденным волокнам. Ферменты, которые выделяются фибробластами, разрушают отжившие свой срок, старые и поврежденные эластин, коллаген и гиалуроновую кислоту, при этом заменяя их новыми и здоровыми. Процесс разрушения-восстановления проходит непрерывно, обеспечивая обновление межклеточного вещества. Особенно интенсивно происходит обмен гиалуроновой кислоты.

3. Фибробласты – это уникальные лекари нашего организма. При любом повреждении они с током крови «сбегаются» в очаг травмы и обеспечивают максимально быстрое восстановление разрушенных участков, заживление ран и эпителизацию (быстрое восстановление эпидермиса – поверхностного слоя кожи).

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

П ервая задача, которую преследуют фибробласты – восстановление барьера для поддержания постоянства внутренней среды, т.е. «залепить дырки». Поэтому они начинают очень активно делиться и в авральном режиме вырабатывать молекулы соединительной ткани, которые в спешке формируются крупные, грубые, незрелые, располагающиеся в тканях хаотично. Так появляется первый рубец – красный, плотный, неэластичный, «слабый».

Ф ибробласты размножаются гораздо быстрее, чем клетки эпидермиса, поэтому, если повреждение базальной мембраны больше 5 мм, то рубец выйдет на поверхность. Если меньше, то восстановится полнослойная кожа.

З атем фибробласты начинают вырабатывать ферменты, разрушающие волокна и постепенно замещать их зрелыми, эластичными, структурными. И рубец бледнеет, становится эластичным, тонким, прочным.

4. Отвечают фибробласты и за регенерацию кожи (восстановление, обновление), так как именно они продуцируют очень важные факторы роста – регуляторные белки (тканевые гормоны), функцией которых является стимуляция деления и роста клеток дермы и эпидермиса, а также формирования новых сосудов. Перечислим только некоторые факторы роста, вырабатываемые фибробластами:

Основной фактор роста фибробластов (bFGF) отвечает за формирование и развитие всех типов клеток кожного покрова, заставляет фибробласты активно вырабатывать коллагеновые и эластиновые волокна, гиалуроновую кислоту.

Трансформирующий ростовой фактор (TGF-бета) отвечает за быструю регенерацию поврежденной дермы. Он притягивает фибробласты к месту повреждения и активизирует выработку ими коллагеновых волокон и фибронектина – веществ, обеспечивающих восстановление травмированной кожи.

Трансформирующие ростовые факторы (TGF-альфа, a-NGF) вызывают неоангиогенез – процесс формирования новых сосудов в коже.

Эпидермальный фактор роста (EGF) ускоряет деление и созревание кератиноцитов.

Фактор роста кератиноцитов (KGF) ускоряют процессы заживления и эпителизации ран, стимулируя размножение и развитие клеток эпидермиса (кератиноцитов).

5. Травма является для фибробластов своего рода сигналом, заставляющим их делиться в ускоренном темпе и продуцировать факторы роста, которые в свою очередь притягивают к очагу повреждения фибробласты и другие клетки, обеспечивающие восстановление поврежденной ткани.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.


Уникальные свойства фибробластов

1. Клетки нашего организма не могут размножаться бесконечно и их количество сокращается приблизительно на 10-15 % каждые 8-10 лет. Причем процесс идет в геометрической прогрессии. Это связано с тем, что при каждом делении клетки утрачивается небольшой фрагмент ДНК. Поначалу теряются участки ДНК (теломеры), не несущие важной информации для функционирования клетки. С каждым делением длина теломеров уменьшается и когда они «заканчиваются» и возникает угроза потери фрагментов ДНК, несущих значимую информацию для клетки, ее деление прекращается. Максимально возможное количество делений составляет в среднем 50 ± 10 и называется «предел Хейфлика», в честь американского ученого, в 1961 году открывшего этот феномен. Отсчет количества делений начинается в эмбриональном периоде и после того, как исчерпывается лимит, начинается старение клеток, тканей и организма в целом.

2. Ранее существовало мнение, что с течением времени фибробласты утрачивают способность к делению и превращаются в фиброциты – зрелые клетки, отличающиеся малой активностью. Однако в результате научных исследований было выяснено: несмотря на то, что количество фибробластов с возрастом уменьшается, они не теряют свои функциональные качества и по-прежнему способны делиться, но по какой-то причине перестают это делать, просто «засыпают» и при необходимости могут переходить вновь в активную форму. По всей видимости, причина этого кроется в наличии фермента теломеразы, которая после каждого деления клетки восстанавливает длину теломера, тем самым увеличивая количество делений фибробласта. Впервые этот механизм, обеспечивающий способность бесконечного деления, был обнаружен у стволовых клеток.

Э то открытие повлекло за собой разработку методики культивирования аутологичных фибробластов с их последующей трансплантацией в дерму пациента. Процедура является по сути дела воплощением мечты о вечной молодости, ведь она предполагает не только устранение возрастных признаков, но и воздействие на саму причину увядания кожи.


Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

3. Возраст донора фибробластов не имеет значения для продолжительности их жизни, функциональной активности и способности к делению. Этот феномен связан с тем, что в процессе культивирования происходит их омоложение. К такому выводу пришел Cristofalo с соавторами, проведя многолетние исследования. По его мнению, в лаборатории клетки возвращаются в состояние, характеризующееся высокой функциональной активностью и приближающее их по свойствам к мезенхимальным стволовым клеткам.

4. В процессе выделения фибробластов из кусочка кожи пациента получается первичная культура клеток, содержащая как молодые, так и старые клетки. Далее все эти клетки помещаются в среду, содержащую эмбриональную сыворотку, т.е. в условия, которые наблюдаются в эмбриональном состоянии. При этом стимулируется деление молодых клеток, сохранивших высокие способности к росту, и разбавление или вымывание из культуры старых клеток, которые потеряли способность к пролиферации. Таким образом, культура как бы омолаживается. Помимо этого, по данным Makinodan, старые клетки в подобных условиях реактивируются и в последующем, при введении в дерму заселяют ее и усиленно синтезирует весь комплекс компонентов внеклеточного матрикса и факторов роста, необходимый для поддержания кожи пациента в оптимальном физиологическом состоянии.

Важно отметить, что речь идет о собственных клетках пациента, которые, взрослея, не будут поглощаться макрофагами в отличие от пересаженных донорских клеток.

5. В процессе культивации фибробласты утрачивают ген чужеродности, а также они неспособны вызывать онкологию, что позволяет использовать для терапии «чужие» - донорские клетки, что уже доказано многолетними клиническими испытаниями. Впервые методика культивирования фибробластов появилась в 1968 году и применялась для ускорения заживления ран. В 1998 году FDA одобрила первый клеточный продукт на основе фибробластов Apligraf для применения в камбустиологии (лечения ожогов). И только после этого появилось новое направление в эстетической медицине, а именно терапия фибробластами возрастных изменений, а в стоматологии – лечение гингивитов. Правда, поначалу применялись только донорские фибробласты.

Механизм действия такого метода связан со способностью фибробластов синтезировать коллаген, эластин, гиалуроновую кислоту и другие компоненты межклеточного вещества, а также факторы роста, что ускоряет деление и рост эпителия, и в конечном итоге приводит к восстановлению поверхностного и среднего слоя кожи – эпидермиса и дермы.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

6. При любом термическом поражении кожи (ожоге или отморожении) происходит повреждение кожи, а степень выраженности воспалительных явлений и длительность (а подчас и способность к восстановлению) зависит от глубины ее поражения:

I степень – покраснение, отек кожи (стихают через 3-4 дня) и боль (сохраняется 1-2 дня) вследствие обратимого поражения поверхностных слоев эпидермиса. В косметологии такое повреждение кожи наносится специально с помощью поверхностных химических или лазерных пилингов с целью омоложения.

I I степень – образование пузырей, наполненных прозрачным содержимым в результате гибели слоев эпидермиса (до базального, росткового слоя) и их отслойкой. На месте ожога в течение некоторого времени держатся сильные боли и жжение, однако в течение 10-14 дней происходит полное восстановление целостности эпидермиса без образования рубцов. Соответствует срединным пилингам.

IIIа степень – неполный некроз кожи с сохранением дермы и ее производных - потовых и сальных желез, волосяных луковиц, из эпителия которых происходит самостоятельное восстановление эпидермиса в течение 4–6 недель, иногда с образованием рубцов кожи с участками гипер- и депигментации.

IIIб степень – полный некроз всей толщи кожи.

IV степень – омертвение кожи и тканей, под ней расположенных. Эпителизация в таких случаях возможна лишь с краев раны и происходит она очень медленно. Самостоятельно может зажить только рана небольших размеров, т.к. возможности восстановления эпидермиса по краям раны составляют не более 5 мм.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

Важным признаком, отличающим IIIа и IIIб степень, является сохранение болевой чувствительности в первом случае. У детей до полового созревания довольно часто такие ожоги заживают с формированием гипертрофических рубцов. На таком уровне выполняется глубокая лазерная шлифовка или глубокий химический пилинг кожи. Возможно это только на лице, которое характеризуется очень большим количеством придатков кожи, высокой способностью к регенерации, очень активным обменом веществ в клетках и кровоснабжением. На остальных участках кожи нашего тела такое агрессивное воздействие неизбежно приводит к формированию рубцов.

При поверхностных ожогах I, II и IIIа степени фибробласты наносят для комплексного лечения ран большой площади с целью ускорения эпителизации. При глубоких – в сочетании с пересадкой собственной кожи, которой при этом необходимо гораздо меньше.

7. Аутологичные (собственные) и донорские культивированные фибробласты не вызывают аллергических реакций или онкогенеза после трансплантации. Организм распознает их как свои, а не чужеродные клетки, поэтому и не включает механизм защиты от них.

Важный нюанс – омолаживающее действие собственных культивированных фибробластов является гораздо более пролонгированным, чем аналогичное действие донорских клеток. Последних со временем все же распознают и поглощают иммунные клетки нашего организма, поэтому результат остается стабильным не более 2-х лет .

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.


Особенности старения


А
мериканские ученые опубликовали данные, согласно которым после 44 лет для женщин (исходя из средней продолжительности жизни, составляющей 78,8 лет) и после 40 лет для мужчин (исходя из средней продолжительности жизни, составляющей 72,6 года) человек неминуемо начинает сталкиваться с болезнями. Другими словами, почти половину жизни он обречен угасать, страдая от недугов и немощи. Первые признаки деструктивного процесса старения появляются уже в 30-летнем возрасте. Ситуацию усугубляет современный ритм жизни, сопряженный с психическими перегрузками, который самым пагубным образом влияет на организм человека.

К ак уже говорилось выше, благодаря деятельности фибробластов постоянно происходит обновление дермы за счет баланса двух разнонаправленных процессов: разрушение отживших, старых волокон и синтез новых. НО, в определенный момент по какой-то причине (до сих пор не ясной, т.к. начаться это явление может у людей в разном возрасте) снижается способность фибробластов к делению и синтезу веществ. Вместе с тем процесс разрушения старых волокон будет продолжаться еще долгое время, что повлечет за собой уменьшение объема соединительной, мышечной, костной и других видов тканей. Т. е. процесс разрушения начинает преобладать над процессом созидания.

Благодаря предусмотренному природой резерву клеток, последствия дисбаланса остаются не слишком заметными в течение нескольких лет. Между тем после 40-45 лет избежать возрастных изменений не удается никому и подчас они настигают нас лавинообразно, а многих женщин этот период связан с наступлением менопаузы и началом гормонального старения. Именно поэтому Виктор Гюго назвал данный возраст «старостью юности». Спустя время процесс гибели клеток и тканей останавливается, вновь устанавливается баланс между созидательными и разрушительными процессами, однако к этому возрасту человек превращается уже в «усохшего» старичка или старушку. В стареющей коже уменьшается толщина дермы, содержание влаги в ней падает, в результате кожа теряет упругость и эластичность. Следствием этого является растяжение кожи и образование морщин.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

П роцессы обновления и регенерации тканей замедляются, что влечет за собой неприятные последствия:

- базальный (ростковый, регенераторный) слой становится тоньше, образуется все меньше кератиноцитов;

Истончаются клетки эпидермиса (роговые чешуйки);

Процесс удаления роговых чешуек с поверхности кожи замедляется, в результате чего роговой слой становится толще;

Дерма стремительно теряет толщину, количество и размер фибробластов, макрофагов, тканевых базофилов и других клеток дермы уменьшается. Они перестают справляться со своими функциями, что рано или поздно приводит к дефициту коллагена, эластина и межклеточного вещества. Начиная примерно с 25-летнего возраста, синтез коллагена и эластина – волокон, благодаря которым кожа выглядит упругой и здоровой – сокращается ежегодно на 1 % ;

Деформируется структура эластиновых и коллагеновых волокон: они становятся толще, ригиднее, чем должны быть в норме, нарушается упорядоченность их расположения;

В организме вырабатывается все меньше гиалуроновой кислоты, что влечет за собой утрату увлажненности дермы, приводит к пересушенности кожи, образованию на ней микротрещинок и морщин, снижению ее эластичности и тургора;

Ухудшается кровоснабжение и поступление питательных веществ к клеткам дермы;

Восстановительные процессы протекают медленно.

Вышеперечисленные изменения не могут не сказываться на внешнем виде кожного покрова. Постепенно нарастает чувство сухости и стянутости кожи, кожный покров становится дряблым, тонким, неэластичным, покрывается мелкими морщинами и пигментными пятнами. Со временем все эти признаки старения накапливаются и приобретают явную выраженность. Особенно быстро стареют открытые участки кожи и места сгибов.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

Омоложение фибробластами останавливает процесс старения

Н асыщение дермы молодыми фибробластами – максимально естественный, эффективный метод омоложения и профилактики старения, так как он позволяет возродить структуру дермы, а у возрастных пациентов является заместительной терапией.

У никальная процедура клеточного омоложения кожи, основанная на применении аутологичных фибробластов, останавливает процесс снижения запасов собственных клеток дермы. Методика не просто корректирует возрастные изменения, а воздействует на них на уровне микротекстуры: молодые фибробласты омолаживают дерму изнутри, а также стимулируют активность тех фибробластов, которые имеются в организме. Как следствие, повышается скорость деления клеток, быстрее обновляется поверхностный слой кожи, формируются новые молодые коллагеновые и эластиновые волокна, увеличивается содержание в дерме гиалуроновой кислоты. Вы снова наслаждаетесь видом сияющей бархатистой кожи, надолго забываете о морщинах, расширенных порах, пигментных пятнах, шелушении и сухости.

К леточная терапия справляется даже с растяжками – дефектами, которые практически невозможно устранить с помощью прочих малоинвазивных методик. Фибробласты не просто останавливают биологические часы, а заставляют их идти в обратном направлении. А если, спустя какое-то время их активность снизится и они заснут, то простые методы физической травмы, проникающей в дерму (такие как диодное и углекислотное лазерное омоложение кожи), вновь их разбудят и заставят долгое время трудиться, многократно усиливая омолаживающий эффект.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

В ведение в дерму культивированных в условиях лаборатории фибробластов позволяет вернуть коже свойственные молодости эластичность и упругость. Более того, если в последующем вы будете делать косметологические процедуры или пластические операции, то получите гораздо более выраженный эффект, чем те, кто не активировал предварительно собственные фибробласты и не пополнил их запас.

С казочный эффект использования аутологичных фибробластов оценили уже многие знаменитости. Ведь результаты процедуры действительно поразительны: сеть мелких морщин бесследно исчезает, глубокие складки разглаживаются. День за днем вы наблюдаете в зеркале, как кожа становится все более сияющей и упругой, улучшается ее тонус, разглаживается сеть мелких морщин, а цвет лица становится здоровым. Шея и руки больше не выдают возраст – кожа этих частей тела приобретает подтянутый вид и наполненность. Трансплантация культивированных фибробластов повышает защитно-барьерные свойства кожи, а значит неблагоприятные факторы и стрессы не смогут украсть молодость и красоту.

Т ерапия аутологичными фибробластами значительно эффективнее, чем инъекции Ботокса, которые при длительном и частом применении может вызывать повреждение нервных окончаний и нарушение питания кожи.

П омимо этого, введение фибробластов более результативно, чем заместительная терапия гиалуроновой кислотой, которая омолаживает кожу на небольшой промежуток времени, а затем их необходимо повторять. При частом использовании и с течением времени, на искусственную гиалуроновую кислоту организм начинает вырабатывать антитела, и разрушение введенных препаратов происходит все быстрее. Кроме того, введение избытка (особенно в возрасте до 35 лет!) гиалуроновой кислоты, оказывает тормозящее влияние на синтез структурных компонентов кожи фибробластами, тем самым косвенно ускоряя старение.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.


Показание к терапии фибробластами:

Профилактика старения – инъекции можно начинать с 40 лет, тем самым выполняется заместительная терапия;

Омоложение кожи лица, шеи, декольте, рук устраняет признаки старения: истонченность, дряблость, сниженный тургор и эластичность, пигментацию, атрофичность и мелкую морщинистость;

Улучшение качества кожи тела: живота, спины, бедер. Терапия фибробластами усиливает эластичность и тонус, тем самым оказывая лифтинговый эффект;

Устранение пигментации вокруг глаз;

Ускорение «созревания» молодых рубцов – в «возрасте до 12 месяцев;

Лечение постакне рубцов;

Лечение растяжек;

Подготовка к пластическим операциям и быстрое восстановление после них;

Ускорение восстановления после пилингов, лазерных процедур и т.д.

Противопоказания к терапии фибробластами:

Острые инфекционные заболевания;

Обострение хронических болезней;

Аутоиммунные заболевания соединительной ткани;

Склонность к келоидным и гипертрофическим рубцам;

Онкологические заболевания;

Длительная терапия стероидами;

Беременность, лактация.

Терапия фибробластами


Е
сли говорить о терапии аутологичными фибробластами просто, то она состоит из нескольких этапов:

1. Забор кусочка кожи. Его можно брать на любом участке тела, важно только соблюсти размер – около 5*1,5 см. От размера забранного участка кожи зависит количество фибробластов, которое получат в лаборатории «Покровского банка стволовых клеток» (с которым сотрудничает наша клиника). Для того чтобы правильно насытить кожу молодыми клетками, за одну процедуру необходимо (по специальной методике!) ввести достаточное количество фибробластов (около 2-3 миллионов в 1 мл). Поэтому технологи лабораторий просят кусочек кожи побольше.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

Наиболее часто мы его забираем, иссекая здоровую кожу по ходу существующих на теле рубцов от ранее перенесенных операций или травм, а при их отсутствии из области паха. После забора необходимого участка, ранка зашивается послойно, заканчивая внутрикожным швом, который мы снимаем на 7-10 день после операции. В последствие на этом месте останется тонкий малозаметныйнитевидный шов, который легко прячется даже в самых открытых трусиках.

Для выполнения данного этапа требуется сдать анализы крови: общий клинический, биохимический (глюкоза, АЛТ, АСТ, билирубин, мочевина, креатинин) и коагулограмму.

Для выделения и культивирования фибробластов подходит кожа, удаленная в ходе эстетических операций (подтяжка лица, блефаропластика, абдоминопластика и т.д.). Многие пациенты хотят в последующем повторить процедуру, и технологи сразу культивируют две порции фибробластов, одну из которых хранят в криогенной камере до нужного момента – чтобы не пришлось в следующий раз забирать кусочек кожи.

2. Выделение и культивирование фибробластов в лаборатории «Покровского банка стволовых клеток»: кусочек кожи измельчается, обрабатывается специальными ферментами, промывается физиологическим раствором. Потом вышедшие при этом клетки осаждаются в центрифуге и высеваются на специальную питательную среду. Размножаются до необходимого количества, снимаются с подложки, очищаются от остатков среды, осаждаются в центрифуге.

3. Очень важна система контроля качества полученных в результате культивирования фибробластов. Для этого ежедневно контролируют и удаляют из культуры клетки, обладающие онкогенным потенциалом: ежедневный контроль формы, строения, активности размножения клеток, а также исследование ДНК и при необходимости – уровня экспрессии (выделения) онкогенных маркеров. Помимо этого, контроль качества включает анализ на бактериальную загрязненность и на отсутствие вирусов ВИЧ, гепатитов. На каждую порцию клеток предоставляется паспорт фибробластов, в котором указывается ФИО донора, дата, время изготовления, количество клеток в 1 мл, и отрицательные результаты тестов на онкогенность и инфекции.

Далее возможны варианты – они либо вводятся в физиологическом растворе методом мезотерапии (для омоложения), либо помещаются на специальный гелевый носитель (для заживления ран и ожогов). Занимать весь этот процесс может от 4 до 6 недель.

Не является публичной офертой! Имеются противопоказания. Перед использованием необходима консультация специалиста.

4. Каждая порция клеток готовится не только к определенной дате, но и заранее оговоренному времени, т.к. фибробласты вне тканей человека уязвимы и должны быть введены в течение 6 часов, т.к. после этого они погибнут. Вводятся фибробласты 5 раз с интервалом 2 недели, мезотерапевтической техникой, в верхние слои кожи. Такая методика обеспечивает стабильность результата и омолаживающий эффект. При этом хорошо работает правило: чем больше площадь обработки, тем значительнее омоложение.


Р
езультат от терапии собственными фибробластами накопительный, он появляется на уровне ощущений спустя 1-1,5 месяца от начала процедур (как правило, к третьей) и затем постепенно усиливается до 12-18 месяцев, а затем остается стабильным от 5 лет и более. Это метод естественного омоложения кожи, абсолютно безопасный, высокоэффективный и «долгоиграющий». Введение фибробластов направлено на улучшение качества кожи, т.е. ее тургора, тонуса, цвета, плотности и т.д., НО никогда не приводит к лифтингу !

Е сли же Вы начали замечать, что фибробласты снижают свою активность – их легко простимулировать лазерной терапией (СО, диодный, неодимовый лазеры, действующие надерму), эффект от которой будет намного выраженнее и заметнее.

1. Продукция всех компонентов межклеточного вещества (волокон и основного аморфного вещества). Фибробласты синтезируют коллаген, эластин, фибронектин, гликозаминогликаны и др.

2. Поддержание структурной организации и химического гомеостаза межклеточного вещества (за счет сбалансированных процессов его выработки и разрушения).

3. Регуляция деятельности других клеток соединительных тканей и влияние на другие ткани. Продукция цитокинов (колониестимулирующих факторов гранулоцитов и макрофагов).

4. Заживление ран. При воспалении и заживлении ран фибробласты активируются макрофагами.

Рис. 3.2. Рыхлая и волокнистая соединительные ткани – пленочный препарат I – основное вещество; II – коллагеновые волокна; III – эластические волокна; IV – клетки; V – кровеносный сосуд. 1 – фибробласты, 2 – фиброцит, 3 – макрофаги, 4 – тучные клетки, 5 – плазмоциты, 6 – лейкоциты, 7 – жировая клетка.


Рис.3.3. Электронограмма фибробласта среди коллагеновых волокон
(х 18.500).

Ct- поперечные,

Сl – продольные срезы коллагеновых волокон;

N – ядро клетки смещено на периферию;

ER – эндоплазматический ретикулум;

G – комплекс Гольджи.


Рис. 3.4. Актиновые микрофиламенты в цитоплазме миофибробласта (иммунофлюоресцентный метод).

Макрофаги. На втором месте в количественном отношении среди клеток рыхлой соединительной ткани стоят макрофаги Макрофаги образуются путем дифференцировки и размножения, вышедших в ткань из крови моноцитов. Различают свободные и фиксированные макрофаги.По сравнению с фибробластами они меньших размеров 10-15 мкм. Имеют различную форму - округлую, вытянутую или неправильную. В базофильной цитоплазме макрофагов содержится много лизосом, фагосом, пиноцитозных пузырьков. Умеренное развитие имеют митохондрии, ЭПС, комплекс Гольджи. Макрофаги – активно фагоцитирующие клетки, богатые органеллами для внутриклеточного переваривания поглощенного материала (лизосомы) и синтеза антибактериальных и других биологически активных веществ (пироген, антиферон, лизоцим, ЭПС). Ядра содержат больше хроматина и окрашиваются более интенсивно, чем ядра фибробластов. Цитоплазма макрофагов образует глубокие складки и длинные микроворсинки, которые обеспечивают захват инородных частиц. Поверхность макрофага имеет рецепторы чувствительные к эритроцитам, T и B-лимфоцитам, антигенам и иммуноглобулинам. Последние обеспечивают возможность их участия в иммунных реакциях организма.

А Б

Рис. 3.5. Ультраструктура макрофага. А – активная форма, Б –поверхность макрофага (х11.600). Сканирующая электронная микроскопия. 1– отростки клетки. Pp, 1 –псевдоподии; Р –фагоцитированные частицы; М – митохондрии; L – лизосомы. Ядро неправильной формы.

Макрофаги наряду со способностью к фагоцитозу синтезируют целый ряд веществ, обеспечивающих врожденный иммунитет (лизоцим, интерферон, пироген и др.). Макрофаги секретируют медиаторы - монокины, способствующие специфической реакции на антигены и цитолитические факторы, которые избирательно разрушают опухолевые клетки.

Функции макрофагов:

1. фагоцитоз: распознавание, поглощение и переваривание поврежденных, зараженных, опухолевых и погибших клеток, компонентов межклеточного вещества, а также экзогенных материалов и микроорганизмов.

2. участие в индукции иммунных реакций, т.к. (играют роль антиген-представляющих клеток).

3. регуляция деятельности клеток, других типов (фибробластов, лимфоцитов, тучных клеток, эндотелиоцитов и др.).

Макрофаги развиваются из моноцитов. Совокупность клеток, имеющих одно ядро, называется монокулиарной фагоцитарной системой, и мононукледов, обладающих способностью к фагоцитозу: захватывать из тканевой жидкости организма инородные частицы, погибающие клетки, неклеточные структуры, бактерии и др. Фагоцитированный материал подвергается внутри клетки ферментативному расщеплению (“завершенный фагоцитоз”), благодаря чему ликвидируются вредные для организма агенты, возникающие местно или проникающие извне. Макрофаги (гистиоциты) рыхлой волокнистой соединительной ткани, звездчатые клетки синусоидных сосудов печени, свободные и фиксированные макрофаги кроветворных органов (костного мозга, селезенки, лимфатических узлов), макрофаги легкого, воспалительных экссудатов (перитонеальные макрофаги), остеокласты, гигантские клетки инородных тел и глиальные макрофаги нервной ткани (микроглия). Все они способны к активному фагоцитозу, имеют на своей поверхности рецепторы к иммуноглобулинам и происходят из промоноцитов костного мозга и моноцитов крови. В отличие от таких “профессиональных” фагоцитов способность к факультативному поглощению может быть выражена независимо от указанных циторецепторов у других клеток (фибробласты, ретикулярные клетки, эндотелиоциты, нейтрофильные лейкоциты). Но эти клетки не входят в состав макрофагической системы.

И.И. Мечников (1845-1916) первым пришел к мысли о том, что фагоцитоз, возникающий в эволюции как форма внутриклеточного пищеварения и закрепившийся за многими клетками, одновременно является важным защитным механизмом. Он обосновал целесообразность объединения их в одну систему и предложил назвать ее макрофагической. Макрофагическая система представляет собой мощный защитный аппарат, принимающий участие, как в общих, так и в местных защитных реакциях организма. В целостном организме макрофагическая система регулируется как местными механизмами, так нервной и эндокринной системами. В 30-40-х годах эту защитную систему называли ретикулоэндотелиальной. В последнее время ее называют системой мононуклеарных фагоцитов, что, однако, неточно характеризует ее в связи с тем, что среди клеток, входящих в эту систему, есть и многоядерные (остеокласты).

Плазматические клетки – плазмоциты имеют округлую форму. Величина плазматических клеток от 7 до 10мкм. Ядро округлой или овальной формы лежит, как правило, эксцентрично. Глыбки хроматина в нем расположены по радиусам. Они напоминают пирамиды, основание которых лежит на ядерной оболочке. Создается впечатление, что хроматин расположен в виде спиц в колесе. Данное обстоятельство служит одним из диагностических признаков при определении плазмоцитов.

А Б В

Рис. 3.6. Плазматическая клетка. А – в мазке крови. Б – схема. В – электронограмма.

Цитоплазма клеток резко базофильна, особенно по периферии. В центре перед ядром имеется небольшое просветление - "дворик". Он содержит сетчатый аппарат, центриоли, митохондрии. Цитохимически в плазматических клетках обнаруживается громадное количество рибонуклиопротеидов, обусловливающих базофилию цитоплазмы. Среди белков обнаруживается много – γ-глобулина. С ним связывается основная функция клеток - участие в защитных реакциях организма.

Зрелые плазматические клетки характеризуются высокой базофилией и эксцентрично расположенным ядром. Под электронным микроскопом определяются параллельные мембраны. Наличие параллельных мембран в цитоплазматической сети характерно для клеток, синтезирующих белок на “экспорт”. Вырабатываемый плазматической клеткой белок может иметь различный состав и определяется качеством белка раздражителя или антигена. Поэтому мы говорим, что синтез белка в плазматических клетках - частное выражение способности этих клеток принимать участие в белковом обмене. Наряду с этим цитоплазма клетки выделяет небольшое количество гликозаминогликанов, поступающих в межклеточное вещество.

Сравнение концентрации глобулина показало, что в зрелых клетках его меньше, чем в незрелых. В последнее время считают, что зрелая клетка - это плазматическая клетка в состоянии покоя. При встрече с антигеном, раздражителем она также может интенсивно образовывать глобулин и по своим морфологическим признакам приближаться к той клетке, которую называют "незрелой". Плазматические клетки называют иммунокомпетентными, т. к. они сохраняют "память" об антигенных раздражителях и при повторной встрече с ним блокируют антиген специфическим антителом.

Одно из проявлений иммунной реакции у позвоночных животных при попадании в организм чужеродного агента - выделение плазматическими клетками антител.

В цитоплазме плазматических клеток могут появляться кристаллические включения, воспринимающие кислые красители, так называемые тельца Русселя. Считают, что они являются конгломератами глобулинов, синтезированных ранее этой клеткой.

Плазматические клетки обеспечивают гуморальный иммунитет путем выработки антител. За 1 секунду каждый плазмоцит синтезирует до нескольких тысяч молекул иммуноглобулииов (более 10 млн. молекул в час).

Тканевые базофилы (лаброциты, тучные клетки). Тучные клетки – постоянный клеточный компонент рыхлой волокнистой соединительной ткани, осуществляющий важные регуляторные функции. Эти клетки имеют в цитоплазме зернистость, напоминающую гранулы базофильных лейкоцитов. Они являются регуляторами местного гомеостаза соединительной ткани.

А Б

Рис. 3.7. Структура тучной клетки А – Тучные клетки (М) в составе соединительной ткани (х1200); Б – рельеф клеточной поверхности.

Развитие тучных клеток осуществляется в тканях из предшественника, который имеет, как предполагают, костномозговое происхождение. На их дифференцировку и рост влияют факторы клеточного микроокружения (фибробласты, эпителиальные клетки и их продукты). В отличие от базофилов, которые после миграции в ткани живут недолго (от нескольких часов до нескольких суток), тучные клетки обладают сравнительно большой продолжительностью жизни (от нескольких недель до нескольких месяцев). В течение этого периода под действием соответствующих стимулов тучные клетки, очевидно, способны делиться.


Рис. 3.8. Электронограмма тучной клетки (х12.000). G – крупные гранулы заполняют всю цитоплазму; Мi – митрхондрии расположенные между ними, в центре расположено ядро.


Тканевые базофилы имеют разнообразную форму. У человека и млекопитающих чаще их форма овальная. Размеры 3,5х14 мкм. Ядро небольшое, богатое хроматином. Встречаются двуядерные клетки.

Гранулы тучных клеток содержат разнообразные биологически активные вещества. Субмикроскопически они представляют плотные тельца неправильной формы диаметром 0,3-1,4 мкм, окрашиваются метахроматично. Клетки содержат митохондрии, внутриклеточный сетчатый аппарат. Компоненты тучных клеток у различных животных и в различных участках соединительной ткани различные. У кроликов и морских свинок тучных клеток мало, у белых мышей очень много. У человека и животных тучные клетки обнаружены во всех местах, где имеются прослойки рыхлой соединительной ткани. Они расположены группами по ходу кровеносных и лимфатических сосудов. Количество тучных клеток изменяется при различных состояниях организма - при беременности увеличивается количество тучных клеток в матке и молочных железах, в желудке и кишечнике в разгар пищеварения. Тучные клетки содержат разнообразные медиаторы и ферменты.

Структурно-функциональные различия тучных клеток. Популяция тучных клеток образована элементами, которые обладают неодинаковыми морфофункциональными свойствами и могут качественно и количественно различаться даже в пределах одного органа. Высказывают предположение о том, что отдельные субпопопуляции тучных клеток выполняют в организме неодинаковые функции.


Функции тучных клеток:

1. Гомеостатическая , которая осуществляется в физиологических условиях путем медленного выделения небольших количеств биологически активных веществ, способных влиять на различные тканевые функции – в первую очередь, на проницаемость и тонус сосудов, поддержание баланса жидкостей в тканях.

2. Защитная и регуляторная, которая обеспечивается путем локального выделения медиаторов воспаления и хемотаксических факторов, обеспечивающих (а) мобилизацию эозинофилов и различных эффекторных клеток, участвующих в так называемых реакциях поздней фазы; (б) воздействие на рост и созревание соединительной ткани в зоне воспаления.

3. Участие в развитии аллергических реакций вследствие наличия высокоаффинных рецепторов к иммуноглобулинам класса Е (IgE) на их плазмолемме и функциональной связи этих рецепторов с секреторным механизмом. Участие тучных клеток в развитии аллергических реакций, как и базофильных гранулоцитов включает:

Ø связывание IgE с высокоаффинными рецепторами на их плазмолемме;

Ø взаимодействие мембранного IgE с аллергеном;

Ø активацию и дегрануляцию тучных клеток с выделением содержащихсяв их гранулах веществ и продукцией ряда новых.

Ø предполагается, что тучные клетки выполняют магниторецепторную функцию.

Дегрануляция может опосредоваться также рецепторами комплемента или вызываться белками нейтрофилов, протеиназами, нейропептидами (вещество Р, соматостатин), лимфокинами.

По подсчетам Уокера полная смена тучных клеток рыхлой соединительной ткани может произойти за 16 – 18 месяцев. По данным Н.Г.Хрущева за 9 дней.

Таблица 3.2.

Медиаторы и ферменты, содержащиеся в тучных клеток

Медиатор Функция
Гистамин Н 1 , Н 2 – рецептор опосредованное действие на гладкомышечные клетки (ГМК), эндотелий, нервные волокна. Вазодилатация, повышение проницаемости капилляров, отек, хемокинез, бронхоспазм, стимуляция афферентных нервов
Химаза Расщепление коллагена IV типа, глюкагона, нейротензина, фибронектина
Триптаза Конверсия С3 в С3а, расщепление фибриногена, фибронектина, активация коллагеназы
Карбоксипептидаза В Разборка внеклеточного матрикса
Дипептидаза Конверсия LTD 4 в LTE 4 . Разрушение внеклеточного матрикса
Кининогеназа Конверсия кининогена в брадикинин
Инактиватор фактора Хагемана Инактивация фактора Хагемана
Гексозаминидаза, глюкуронидаза, галактозидаза Разрушение внеклеточного матрикса (гликопротеинов, протеогликанов)
β-Гликозаминидаза Расщепление гликозаминов
Пероксидаза Конверсия Н 2 О 2 в Н 2 О, инактивация лейкотриенов, образование липидных пероксидов
Фактор хемотаксиса эозинофилов (ECF) Хемотаксис эозинофилов
Фактор хемотаксиса нейтрофилов (NCF) Хемотаксис нейтрофилов
Гепарин Антикоагулянт, избирательно связывает антитромбин III. Ингибитор альтернативного пути активации комплемента. Модифицирует активность других ранее синтезированных медиаторов.
Простагландин PGD 2 , тромбоксан TXA 2 Сокращение ГМК бронхов, вазодилатация, увеличение сосудистой проницаемости, агрегация тромбоцитов
Лейкотриены LTC 4 , LTD 4 , LTE 4 , медленно реагирующий фактор анафилаксии SRS-A Вазо- и бронхоконстрикция, увеличение сосудистой проницаемости, отеки. Хемотаксис и /или хемокинез

Жировые клетки, липоциты. Различают две разновидности жировых клеток: клетки белого и бурого жира. Клетки белого жира моновакуалярные, имеют одну жировую вакуоль. Они располагаются в рыхлой соединительной ткани главным образом по ходу сосудов, а в некоторых участках организма (под кожей, между лопатками, в сальнике и других местах) образуя значительные скопления. Это позволяет выделить специальную жировую ткань, построенную почти исключительно из жировых клеток. Жировые клетки имеют шарообразную форму. Они больше по размеру других клеток соединительной ткани. Их диаметр 30-50 мкм. Непосредственными предшественниками жировых клеток являются малодифференцированные соединительнотканные клетки, расположенные главным образом около капилляров (перикапиллярные или адвентициальные клетки). Возможно образование липоцитов из гистиоцитов, фагоцитирующих жировые капли. В процессе дифференцировки в жировой клетке накапливаются мелкие капли нейтрального жира, которые путем слияния образуют более крупные. Основная функция липоцитов - запас жира как макроэргического соединения. При распаде его высвобождается большое количество энергии, используемой организмом как источник тепла, а также для фосфорилирования АДФ с образованием АТФ. Жир служит источником образования воды, выполняет защитную и опорную функцию. Жировые клетки синтезируют биологически активные вещества – лептин, регулирующий чувство насыщения, эстрогены и т.п.

А Б

Рис.3.9. Клетки белого жира (апудоциты, моновакуолярные клетки) А- совокупность жировых клеток образует жировую дольку, снабженную большим количеством кровеносных сосудов (С) х480); Б – электронная микрофотография периферии 2-х апудоцитов, L – жировая вакуоль; D – мелкие капельки жира; М- митохондрии; С-коллагеновые волокна в межклеточном пространстве. (х6.000).


Рис. 3.10. Электронная микрофотография клетки бурого жира: Ядро расположено в центре,

L – жировые вакуоли,

М- митохондрии,

С – капилляры.


Жировые клетки кроме роли энергетического депо выполняют функции эндокринной железы, гормоны которой регулируют объем и массу тела. Этим гормоном является лептин .

Белая жировая ткань составляет 15-20 % массы тела взрослых самцов и на 5 % больше у самок. В некотором смысле о ней можно говорить как о крупном метаболически активном органе, поскольку она участвует главным образом в поглощении из крови, синтезе, хранении и мобилизации нейтральных липидов (жиров). (Мобилизовать жир – значит сделать его подвижным, с тем чтобы использовать как горючее” в других частях тела.) В жировой клетке при температуре тела жир находится в состоянии жидкого масла. Он состоит из триглицеридов содержащих три молекулы жирной кислоты, образующие эфир с глицерином. Триглицериды – наиболее калорийный вид питательных веществ, поэтому жир в жировых клетках представляет собой хранилище „высококалорийного” горючего, притом относительно легкого. Кроме того, у обитателей холодных стан жир участвует в регуляции температуры лежащих под ним органов. И, наконец, жир служит отличным заполнителем различных „щелей” в организме и образует „подушки”, на которых могут лежать те или иные внутренние органы.

Бурые жировые клетки обнаружены у новорожденных детей и у некоторых животных на шее, около лопаток, за грудиной, вдоль позвоночника, под кожей между мышцами. Она состоит из жировых клеток, густо оплетенных гемокапиллярами. Клетки бурого жира -поливакуолярные. Диаметр клеток бурого жира почти в 10 раз меньше, чем диаметр клеток белого жира. Эти клетки принимают участие в процессах теплопродукции. Адипоциты бурой жировой ткани имеют множество мелких жировых включений в цитоплазме. По сравнению с клетками белой жировой ткани здесь обнаруживается множество митохондрий. Бурый цвет жировым клеткам придают железосодержащие пигменты – цитохромы митохондрий. Окислительная способность бурых жировых клеток примерно в 20 раз выше белых и почти в 2 раза превышает окислительную способность мышцы сердца. При понижении температуры окружающей среды активность окислительных процессов в бурой жировой ткани повышается. При этом выделяется тепловая энергия, обогревающая кровь в кровеносных капиллярах. В регуляции теплообмена определенную роль играет симпатическая нервная система и гормоны мозгового вещества надпочечников – адреналин и норадреналин, который через циклический аденозинмонофосфат стимулирует активность тканевой липазы, расщепляющей триглицериды на глицерин и жирные кислоты. Последние, накапливаясь в клетке, разобщают процессы окислительного фосфорилирования, что приводит к высвобождению тепловой энергии, обогревающей кровь, протекающую в многочисленных капиллярах между липоцитами. При голодании бурая жировая ткань изменяется меньше, чем белая.

Пигментоциты (пигментные клетки).содержат в своей цитоплазме пигмент меланин. Они имеют отростчатую форму и подразделяются на два вида - меланоциты , которые вырабатывают пигмент, и – меланофоры , способные лишь накапливать его в цитоплазме. У людей черной и желтой рас пигментные клетки более распространены, чем определяется неизменяемый в зависимости от времени года цвет кожи. Пигментоциты имеют короткие непостоянной формы отростки. Эти клетки лишь формально относятся к соединительной ткани, так как располагаются в ней. В настоящее время имеются веские доказательства того, что эти клетки образуются из нервных гребней, а не из мезенхимы.


Таблица 3.3. Различия между белой и бурой жировыми клетками

Белая жировая клетка Бурая жировая клетка
Широко распространена у человека: в т.ч. находится - в подкожной жировой клетчатке, - в сальнике, - в жировых отложениях вокруг внутренних органов, - в диафизах трубчатых костей (жёлтый костный мозг) и т.д. а) Встречается у новорождённых детей - в области лопаток, - за грудиной и в некоторых других местах. б) У взрослого человека находится в воротах почек и в корнях лёгких. У животных, впадающих в спячку
В клетках ядра оттеснены к периферии. Ядра расположены в центре клеток.
В клетках - одна большая жировая капля. В клетках - много мелких жировых капель.
Количество митохондрий невелико. В цитоплазме - много митохондрий (откуда - бурый цвет ткани).
Функции клетки: депонирование жира, ограничение теплопотерь, механическая защита. Функция - обеспечение теплопродукции.
жир из белой жировой клетки расходуется, главным образом, не в ней самой, а в иных органах и тканях, а жир бурой жировой клетки расщепляется для обеспечения теплопродукции непосредственно в ней самой.

Адвентициальные клетки . Это малоспециализированные клетки, сопровождающие кровеносные сосуды. Они имеют уплощенную или веретенообразную форму со слабобазофильной цитоплазмой, овальным ядром и слаборазвитыми органеллами. В процессе дифференцировки эти клетки, по-видимому, могут превращаться в фибробласты, миофибробласты, адипоциты. Многие авторы отрицают существование адвентициальных клеток как самостоятельного клеточного типа, считая их клетками фибробластического ряда.

Эндотелиальные клетки – выстилают сосуды, поэтому их совокупность называется сосудистым эндотелием. Строение сосудистого эндотелия сходно со строением эпителиальной ткани. Эндотелию присущи следующие общие признаки.

1. Пограничное положение покровного эпителия и эндотелия.

2. Непрерывность эндотелиальной выстилки внутри всех кровеносных и лимфоносных сосудов у позвоночных.

3. Отсутствие основного промежуточного вещества по всей окружности клеток эндотелия и эпителия.

4. Наличие базальной мембраны, выполняющей функцию опоры и фиксации эндотелиальных клеток. Её основу, как и основу базальных мембран эпителия, составляет коллаген IV типа.

5. Гетерополярность в строении клеток. У эндотелиоцитов это проявляется в образовании микроворсинок на люминальной поверхности клеток (при относительной гладкости базальной), в неравнозначности элементов цитоскелета и концентрации микропиноцитозных везикул в цитоплазме противостоящих поверхностей клеток.

6. Специализированные контакты между эндотелиальными клетками по типу замыкающих, фибриллярные полоски которых располагаются ближе к люминальной поверхности клеток, чем подчеркивается её полярность.

7. Барьерная, секреторная, транспортная функции в их идеальном сочетании.

8. Рост эндотелия в тканевых культурах в виде монослоя клеток полигональной формы, обладающих выраженным контактным торможением.

В силу этого сходства многие исследователи относят эндотелий к эпителиальной ткани. Однако эндотелий происходит из мезенхимы, на основании чего его относят к соединительной ткани.

Эндотелиальные клетки играют важную роль в процессах транскапиллярного обмена, принимают участие в образовании тканевых мукополисахаридов, гистамина, фибринолитических факторов.

Функции эндотелия:

1. Транспортная – через него осуществляется избирательный двусторонний транспорт веществ между кровью и другими тканями. Механизмы: диффузия, везикулярный транспорт (с возможным метаболическим превращением транспортируемых молекул).

2. Гемостатическая – играет ключевую роль в свертывании крови. В норме образует атромбогенную поверхность; вырабатывает прокоагулянты (тканевый фактор, ингибитор плазминогена) и антикоагулянты (активатор плазминогена, простациклин).

3. Вазомоторная – участвует в регуляции сосудистого тонуса: выделяет сосудосуживающие (эндотелин) и сосудорасширяющее (простациклин, эндотелиальный релаксирующий фактор – окись азота) вещества; участвует в обмене вазоактивных веществ – ангаотензина, норадреналина, брадикинина.

4. Рецепторная – экспрессирует на плазмолемме ряд соединений, обеспечивающих адгезию и, и последующую трансэндотелиальную миграцию лимфоцитов, моноцитов и гранулоцитов.

5. Секреторная – вырабатывает митогены, ингибиторы и факторы роста, цитокины, регулирующие кроветворение, пролиферацию и дифференцировку Т- и В-лимфоцитов, привлекающие лейкоциты в очаг воспаления.

6. Сосудообразовательная – обеспечивает новообразование капилляров (ангиогенез) – как в эмбриональном развитии, так и при регенерации.

Перициты – клетки звездчатой формы, примыкающие снаружи к артериолам, венулам и капиллярам. Наиболее многочисленны в посткапиллярных венулах. Имеют собственную базальную мембрану, сливающуюся с базальной мембраной эндотелия, так что создается впечатление, что перицит заключен в расслоившуюся базальную мембрану эндотелия. Перицит охватывает стенку сосуда, что позволяет предположить их участие в регуляции просвета сосудов.

Перициты имеют дисковидное ядро с небольшими углублениями, содержат обычный набор органелл, мультивезикулярные тельца, микротрубочки и гликоген. В области, обращенной к стенке сосуда, содержат пузырьки. Около ядра и в отростках присутствуют сократительные белки, в т.ч. актин и миозин. Перициты покрыты базальной мембраной, но тесно связаны с эндотелиальной клеткой, т.к. базальная мембрана между ними может и отсутствовать. В этих местах выявлены щелевые и адгезионные контакты.

Функции перицитов четко не установлены. О конкретных функциях можно говорить с разной степенью вероятности.

1. Контрактильные свойства. Вероятно участие перицитов в регуляции просвета микрососуда.

2. Источник гладкомышечных клеток (ГМК). При заживлении ран и восстановлении сосудов перициты в течение 3-5 дней дифференцируются в ГМК.

3. 3.Влияние на эндотелиальные клетки. Перициты контролируют пролиферацию эндотелиальных клеток, как при нормальном росте сосудов, так и при их регенерации; модулируют функцию эндотелиальных клеток, регулируя транспорт макромолекул из капилляров в ткани.

4. Секреторная функция. Синтез компонентов базальной мембраны капилляра.

5. Участие в фагоцитозе.

Межклеточное вещество рыхлой волокнистой соединительной ткани состоит из волокон и основного аморфного вещества. Оно является продуктом деятельности клеток этой ткани, в первую очередь, фибробластов.

Функции межклеточного вещества рыхлой волокнистой соединительной ткани:

1. обеспечение архитектоники, физико-химических и механических свойств ткани;

2. участие в создании оптимального микроокружения для деятельности клеток;

3. объединение в единую систему всех клеток соединительной ткани и обеспечение передачи информации между ними;

4. воздействие на многочисленные функции различных клеток (пролиферацию, дифференцировку, подвижность, экспрессию рецепторов, синтетическую и секреторную активность, чувствительность к действию различных стимулирующих, ингибирующих и повреждающих факторов и т.п.). Этот эффект может осуществляться путем контактного воздействия компонентов межклеточного вещества на клетки, а также благодаря его способности накапливать и выделять факторы роста.

Коллагеновые волокна в составе разных видов соединительной ткани определяют их прочность. В рыхлой неоформленной волокнистой соединительной ткани они располагаются в различных направлениях в виде волнообразно изогнутых, спиралевидно скрученных, округлых или уплощенных в сечении тяжей толщиной 1-3 мкм и более. Длина их различна. Внутренняя структура коллагенового волокна определяется фибриллярным белком - коллагеном, который синтезируется на рибосомах гранулярной эндоплазматической сети фибробластов.

Рис. 3.11. I. Схема – уровни структурной организации коллагеновых волокон. II. Электронная микрофотография - коллагеновая фибрилла. Различают четыре уровня организации коллагеновых волокон: молекулы тропоколлагена (1), протофибриллы (2), фибриллы (3) и волокна (4).\

Коллагеновые волокна распространены не только в собственно соединительной ткани, но также в кости и хряще, где они соответственно называются оссеиновыми и хондриновыми. Эти волокна определяют прочность тканей на разрыв. В рыхлой неоформленной соединительной ткани они располагаются в различных направлениях в виде волнообразно изогнутых тяжей толщиной 1-3 мкм. Коллагеновые волокна состоят из пучков параллельно расположенных микрофибрилл толщиной в среднем 50-100 нм, связанных между собой гликозаминогликанами и протеогликанами. Их толщина зависит от числа фибрилл, которые имеют поперечную исчерченность (черные и светлые участки) с периодом повторяемости 64-70 нм. В пределах одного периода находятся вторичные полосы шириной 3-4 нм.

Коллагеновые структуры, входящие в состав соединительных тканей организма человека и животных, являются наиболее распространенными ее компонентами. Основным их компонентом является волокнистый белок - коллаген.

Коллаген - главный белок соединительной ткани, которая составляет свыше 50% веса организма человека и животных. Одновременно, по расчетам швейцарского ученого Ф. Верцара, на долю коллагена приходится около 30% общего количества белка в организме. Следовательно, коллаген в количественном отношении стоит среди белков на первом месте.

Расшифровка первичной структуры коллагена - важнейший этап развития этих знаний. Значение раскрытия структуры коллагена следует расценивать с учетом того большого интереса, который проявляют к коллагену в различных областях знаний. Он лежит в основе целых областей технологии. Все кожевенное производство - это по существу переработка коллагена. Денатурированный коллаген–желатин незаменимый компонент фото-киноматериалов. Из переработанного коллагена изготовляется множество материалов, применяющихся в ветеринарной и медицинской практике.

Экстрагированные из волокон молекулы коллагена имеют длину 200 нм и ширину 1,4нм. Они получили название тропоколлагена. Молекулы построены из трипластов - трех полипептидных цепочек, которые сливаются в единую спираль. Каждая цепочка содержит набор из трех аминокислот, закономерно повторяющихся на протяжении ее длины. Первая кислота в таком наборе может быть любой, вторая - пролин или лизин, третья – глицин.

Расположение аминокислот может варьировать, вследствие чего образуется четыре типа коллагена.

1 тип - в собственно соединительной ткани, кости, роговице глаза, склере, зубной связке и др.

2 тип - в гиалиновом и фиброзном хряще, стекловидном теле.

3 тип - в дерме кожи плода, кровеносных сосудах, в ретикулярных волокнах.

4 тип - в базальных мембранах, в капсуле хрусталика.

В 1973 году была расшифрована одна из полипептидных цепей коллагена, что представляется выдающимся событием. Коллаген значительно крупнее по молекулярному весу, чем другие изученные белки. Трудности работы по установлению структуры коллагена были обусловлены величиной молекулы и особой монотонностью его строения - частотой повторения аминокислотных остатков и их сочетаний, что сильно осложняло задачу исследований.

Молекулы коллагена имеют длину около 280 нм и ширину 1,4 нм. Они построены из триплетов - трех полипептидных цепочек, предшественника коллагена – проколлагена, свивающихся еще в клетке в единую спираль. Это первый , молекулярный, уровень организации коллагенового волокна. Проколлаген секретируется в межклеточное вещество.

Второй, надмолекулярный, уровень - внеклеточной организации коллагенового волокна - представляет агрегированные в длину и поперечно связанные с помощью водородных связей молекулы тропоколлагена, образующиеся путем отщепления концевых пептидов проколлагена. Сначала образуются протофибриллы, а 5-6 протофибрилл, скрепленных между собой боковыми связями, составляют микрофибриллы толщиной около 5 нм.

При участии гликозаминогликанов, также секретируемых фибробластами, формируется третий , фибриллярный и, уровень организации коллагенового волокна. Коллагеновые фибриллы представляют собой поперечно исчерченные структуры толщиной в среднем 20-100 нм. Период повторяемости темных и светлых участков 64-67 нм. Каждая молекула коллагена в параллельных рядах, как полагают, смещена относительно соседней цепи на четверть длины, что служит причиной чередования темных и светлых полос. В темных полосах под электронным микроскопом видны вторичные тонкие поперечные линии, обусловленные расположением полярных аминокислот в молекулах коллагена.

Четвертый , волоконный, уровень организации. Коллагеновое волокно, образующееся путем агрегации фибрилл, имеет толщину 1-10 мкм (в зависимости от топографии). В него входит различное количество фибрилл – от единичных до нескольких десятков. Волокна могут складываться в пучки толщиной до 150 мкм.

Коллагеновые волокна отличаются малой растяжимостью и большой прочностью на разрыв. В воде толщина сухожилия в результате набухания увеличивается на 50%, а в разбавленных кислотах и щелочах – в 10 раз, но при этом волокно укорачивается на 30%. Способность к набуханию больше выражена у молодых волокон. При термической обработке в воде коллагеновые волокна образуют клейкое вещество (греч. коllа - клей), что и дало название этим волокнам.


Ретикулярные (ретикулиновые, аргирофильные) волокна. Они встречаются в рыхлой и некоторых других видах соединительной ткани, в строме кроветворных органов, печени, внутренних оболочках сосудов. На препаратах импрегнированных серебром они располагаются в виде сети.

Рис. 3.12. Ретикулярные волокна в лимфатическом узле при импрегнации азотнокислым серебром. Волокна ветвятся, образуя тонкую сеть. ВV- кровеносный сосуд (х800).

Вопрос о природе ретикулярных волокон остается спорным. Большинство исследователей считают, что ретикулин - белок, составляющий основу этих волокон, представляет вещество близкое к коллагену, а импрегнационные и гистохимические отличия ретикулярных волокон от коллагеновых связаны со свойствами прошивающих волокна гликозаминогликанов. В отличие от коллагена и эластина ретикулин содержит больше серина, оксилизина и глютаминовой кислоты.

Эластические волокна. Эластические волокна придают ткани эластичность. Они менее прочны, чем коллагеновые на разрыв. В рыхлой соединительной ткани они образуют петлистую сеть, анастомозируя друг с другом. Толщина волокон от 0,2 до 1 мкм. В отличии от коллагеновых - они не имеют микроскопически видимых фибрилл и субмикроскопической поперечной исчерченности.

А Б

Рис. 3.13. А - Эластические волокна в соединительной ткани (х320). Б - эластические волокна в стенке крупной артерии (х400), Е – тонкие эластические волокна, Сар - разветвленный капилляр, Р –плазматические клетки, С- коллагеновые волокна.

Основой эластических волокон является глобулярный гликопротеин - эластин, синтезируемый фибробластами и гладкими мышечными клетками (первый, молекулярный, уровень организации). Для эластина характерны большое содержание пролина и глицина и наличие двух производных аминокислот – десмозина и изодесмозина, которые участвуют в стабилизации молекулярной структуры эластина и придании ему способности к растяжению, эластичности. Молекулы эластина, имеющие глобулы диаметром 2,8 им, вне клетки соединяются в цепочки - эластиновые протофибриллы толщиной 3-3,5 нм (второй, надмолекулярный, уровень организации). Эластиновые протофибриллы в сочетании с гликопротеином (фибриллином) образуют микрофибриллы толщиной 8-19 нм (третий, фибриллярный, уровень организации). Четвертый уровень организации – волоконный. Наиболее зрелые эластические волокна содержат около 90% аморфного компонента эластических белков (эластина) в центре, а по периферии – микрофибриллы. В эластических волокнах в отличие от коллагеновых нет структур с поперечной исчерченностью на их протяжении.

В последние десятилетия в сфере профессиональной косметологии все большую популярность приобретает методика коррекции кожных покровов посредством восстановительных биологических технологий. К таковым, в частности, относит омоложение при помощи инъекции аутологичных фибробластов.

Научная обоснованность

Данная техника имеет под собой серьезную биологическую почву и базируется на естественной способности организма к регенерации. Фибробласты - это волокнистые клетки, имеющиеся в каждом человеческом теле. Целью их является постоянное производство ценнейших веществ, от которых напрямую зависит здоровое состояние человеческого организма.

В первую очередь эти клетки синтезируют структурные составляющие белков, а также соединительные волокна и гиалуроновую кислоту. Наличие в тканях этих элементов в необходимом количестве и в правильных пропорциях обеспечивает стабильность гидростатического давления в клетках и придает им упругость. В течение жизни по мере приближения человека к зрелому возрасту процентное содержание фибробластов в кожных покровах уменьшается. Они теряют свою эластичность и под воздействием гравитации становятся дряблыми и обвислыми.

В конце XX века в число методик классической хирургии было включено клеточное омоложение фибробластами. Отзывы первых пациентов, к которым была применена эта техника, показали, что в 100% случаев использование инъекций проходило без всяких негативных последствий.

Последовательность действий

Сбор тканей для приготовления раствора производится под местной анестезией. Образцы отправляются в лабораторию, откуда в течение нескольких недель в клинику поступают уже готовые материалы, необходимые для того, чтобы осуществить омоложение фибробластами. Как происходит процедура, можно наблюдать на фото, приведенном ниже.

Кожные покровы лица, а также шеи, области декольте и рук подвергаются обширному инъектированию. Незадолго до начала терапии участки, намеченные врачом, тщательно обрабатываются обезболивающим кремом. Препарат вводится при помощи особых тонких иголок. Оказавшись в слоях дермы, активные клетки начинают производить важнейшие для организма белки (коллаген и эластин), а также гиалуроновую кислоту и прочие элементы, являющиеся неотъемлемой частью матрикса.

Остаток не использованных для инъекции фибробластов по желанию пациента остаются в криобанке, где хранятся бессрочно при температуре низкой в жидком азоте. Их можно получить в любое время для осуществления повторных процедур.

Клеточное омоложение фибробластами: суть процедуры

Обновление соединительных регенерирующихся клеток не только ускоряет восстановительные процессы в структуре кожных покровов, но и позволяет осуществить их коррекцию. Наряду со складками исчезают неглубокие рубцы и прочие эстетические дефекты.

Омоложение фибробластами представляет собой комплекс медицинских процедур, выстроенный с учетом индивидуальных особенностей пациента и именуемый SPRS-терапией. Осуществляется он строго в клинических условиях.

Для инъекции хирург берет образцы кожного покрова пациента и лабораторным путем делает множество копий его структурных элементов. Т. к. фибробласты - это собственные, а не чужеродные клетки человека, процедура их вживления происходит абсолютно естественно. В организме запускаются природные восстановительные процессы, что через некоторое время становится заметным визуально.

Процедура инъекции болезненна не более чем любой из так называемых «уколов красоты» и не оставляет после себя никаких зримых следов, помимо положительных.

Курс омоложения

Чаще всего введение необходимого количества фибробластов осуществляется за две недолгие процедуры. Они проводятся в течение 12 недель через равные интервалы. Однако этот график может варьироваться, поскольку SPRS-терапия предполагает индивидуальный подход, в зависимости от частных особенностей кожных покровов пациента.

Результат процедуры нередко очевиден уже после первого же сеанса, что говорит об удивительной скорости, с которой происходит омоложение фибробластами. Фото, приведенное ниже, наглядно демонстрирует эффект от протекающих восстановительных процессов.

SPRS-терапия не дает побочных эффектов в виде аллергических реакций. Поскольку фибробласты - это основной элемент стволовых клеток мезенхимы, вероятность их непринятия организмом исключается. Курсы терапии прекрасно сочетаются практически со всеми прочими методами, существующими в косметологии в настоящее время.

Показания к процедуре

Внедрение клонированных регенерирующихся клеток показано людям в возрасте 40 лет. Однако данная методика может применяться и на более ранних этапах. Кроме того, стоит помнить, что насыщение кожи фибробластами производится и с целью коррекции незначительных рубцов или дефектов.

Технология введения восстановительных клеток рекомендована людям:

  • с выраженными признаками старения;
  • средних лет (для профилактики увядания кожных покровов);
  • с различного рода дефекатами (рубцы, оспины, ожоги и т.п.);
  • желающим начать формирование фибробластов с целью оздоровления и сохранения тонуса.

Пациентам, имеющим показания к реабилитационным мерам после косметологических процедур (пилинга, шлифовки, пластической операции), также может быть показано омоложение фибробластами. Отзывы об этой процедуре свидетельствуют о том, что сбор образцов для размножения клеток лучше всего осуществлять в более молодом возрасте, когда их способности к регенерации наиболее высоки.

Принцип действия внедренных клеток

Морфологические исследования дермы, искусственно насыщенной фибробластами, свидетельствуют о чрезвычайной продуктивности подобных технологий. Вскоре после инъекции вновь обретенные клетки фиксируются в виде небольших групп. Это происходит по причине дозированного введения биологического материала, который характеризуется слабыми диффузными свойствами.

Внутри межклеточного тонкозернистого вещества начинают наблюдаться синтезированные что является прямым следствием активной восстановительной работы. Характерные признаки сохраняются до 18 месяцев, после чего фибробласты полностью встраиваются в структуру кожи и становятся не более активными, нежели все ее составляющие.

По истечении этих процессов активные клетки можно внедрять вновь по индивидуально подобранной схеме. Как правило, эффект от повторной процедуры отличается более ярким результатом, поскольку восстановительные процессы в кожных покровах уже запущены.

Преимущества восстановительных биотехнологий

Внедренные в кожные покровы фибробласты сохраняют свою активность не менее полутора лет. В дерме вырабатываются необходимые белки, результатом чего становится естественное обновление клеток. Интенсивность омолаживающего эффекта в течение всего срока действия носит параболический характер, возрастая, а затем плавно сходя на нет. К концу периода активность внедренных клеток начинает максимально соответствовать реальному возрасту пациента.

Признаки коррекции возрастных и прочих изменений составляют следующий перечень:

  • значительно снижается количество складок и глубина застарелых рубцов;
  • выравнивается тон кожи, возвращается ее эластичность;
  • восстановительные способности клеток очевидно усиливаются;
  • проявляется явно выраженное омоложение.

Фибробласты - это клетки, отвечающие за свежесть кожных покровов и, в конечном итоге, за красоту человека. Составляя в ряду прочих элементов каркас дермы, они продуцируют и организуют разнообразные компоненты, поддерживая ее необходимое физиологическое состояние.

  • активная стадия инфекционного заболевания;
  • наличие злокачественных опухолей;
  • нарушение функционирования иммунной системы;
  • высыпания и прочие дефекты, не связанные с действием инфекции.

Кроме того, данная терапия противопоказана при беременности и грудном кормлении.

Инъекции фибробластов являются довольно продуктивной базой для прочих процедур, целью которых является восстановление микроструктуры кожи и коррекция ее дефектов. Обширная практика применения биологических технологий омоложения показывает, что воздействие каждого косметологического средства, наложенного на процедуру SPRS-терапии, значительно усиливается.