Строение нервных волокон и их классификация. Миелинизация нервных волокон

МИЕЛИНИЗАЦИЯ (греч. myelos костный мозг) - процесс формирования миелиновых оболочек вокруг отростков нервных клеток в период их созревания как в онтогенезе, так и при регенерации.

Миелиновые оболочки играют роль изолятора осевого цилиндра. Скорость проведения по миелинизированным волокнам выше, чем в немиелинизированных волокнах аналогичного диаметра.

Первые признаки М. нервных волокон у человека появляются в спинном мозге в пренатальном онтогенезе на 5-6-м месяце. Затем число миелинизированных волокон медленно увеличивается, при этом М. в различных функциональных системах происходит не одновременно, а в определенной последовательности в соответствии с временем начала функционирования этих систем. К моменту рождения заметное число миелинизированных волокон обнаруживается в спинном мозге и стволе мозга, однако основные проводящие пути миелинизируются в постнатальном онтогенезе, у детей в возрасте 1-2 лет. В частности, пирамидный путь миелинизируется в основном после рождения. Заканчивается М. проводящих путей к 7- 10-летнему возрасту. Наиболее поздно миелинизируются волокна ассоциативных путей переднего мозга; в коре больших полушарий новорожденного встречаются лишь единичные миелинизированные волокна. Завершение М. указывает на функциональную зрелость той или иной системы мозга.

Обычно миелиновыми оболочками окружены аксоны, реже - дендриты (миелиновые оболочки вокруг тел нервных клеток встречаются как исключение). При светооптическом исследовании миелиновые оболочки выявляются как гомогенные трубочки вокруг аксона, при электронно-микроскопическом - как периодически чередующиеся электронно-плотные линии толщиной 2,5-3 нм, отстоящие друг от друга на расстоянии ок. 9,0 нм (рис. 1).

Миелиновые оболочки - упорядоченная система слоев липопротеидов, каждый из к-рых соответствует по строению клеточной мембране.

В периферических нервах миелиновая оболочка образуется мембранами леммоцитов, а в ц. н. с.- мембранами олигодендроглиоцитов. Миелиновая оболочка состоит из отдельных сегментов, к-рые разделены перемычками, так наз. перехватами узлов (перехваты Ранвье). Механизмы образования миелиновой оболочки заключаются в следующем. Миелинизирующийся аксон сначала погружается в продольное углубление на поверхности леммоцита (или олигодендроглиоцита). По мере погружения аксона в аксоплазму леммоцита края бороздки, в к-рой он располагается, сближаются, а затем смыкаются, образуя мезаксон (рис. 2). Полагают, что формирование слоев миелиновой оболочки происходит за счет спирального вращения аксона вокруг своей оси или вращения леммоцита вокруг аксона.

В ц. н. с. основным механизмом образования миелиновой оболочки является увеличение длины мембран при их «скольжении» относительно друг друга. Первые слои расположены сравнительно рыхло и содержат значительное количество цитоплазмы леммоцитов (или олигодендроглиоцитов). По мере формирования миелиновой оболочки количество аксоплазмы леммоцита внутри слоев миелиновой оболочки уменьшается и в конце концов исчезает полностью, в результате чего аксоплазматические поверхности мембран смежных слоев смыкаются и образуется основная электронно-плотная линия миелиновой оболочки. Слившиеся при формировании мезаксона наружные отделы клеточных мембран леммоцита образуют более тонкую и менее выраженную промежуточную линию миелиновой оболочки. После того как сформируется миелиновая оболочка, в ней можно выделить наружный мезаксон, т. е. слившиеся мембраны леммоцита, переходящие в последний слой миелиновой оболочки, и внутренний мезаксон, т. е. слившиеся мембраны леммоцита, непосредственно окружающие аксон и переходящие в первый слой миелиновой оболочки. Дальнейшее развитие или созревание сформированной миелиновой оболочки заключается в увеличении ее толщины и количества слоев миелина.

Библиография: Боровягин В. Л. К вопросу о миелинизации периферической нервной системы амфибий, Докл. АН СССР, т. 133, № 1, с. 214, 1960; Марков Д. А. и Пашковская М. И. Электронномикроскопические исследования при де^ миелинизирующих заболеваниях нервной системы, Минск, 1979; Bunge М. В., Bunge R. Р. a. R i s H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord, J. biophys, biochem. Cytol., v. 10, p. 67, 1961; G e r e n B. B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos, Exp. Cell. Res., v. 7, p. 558, 1954.

H. H. Боголепов.

Развитие аксона сопровождается его погружением в шванновскую клетку и образованием миелиновой оболочки (рис. 4.20). При этом аксон никогда не контактирует с цитоплазмой шванновской клетки, а погружается в углубление ее мембраны. Края этой мембраны смыкаются над аксоном, образуя удвоенную мембрану, которая несколько раз наматывается вокруг аксона в виде спирали. На более поздних стадиях спираль закручивается более плотно и образуется компактная миелиновая оболочка. Ее толщина в крупных нервах может достигать 2-3 мкм.

Миелиновая оболочка образуется в нескольких микронах от тела клетки, сразу за аксонным холмиком, и покрывает все нервное волокно. Отсутствие такой оболочки ограничивает функциональные возможности нервного волокна: снижается скорость проведения возбуждения по нему.

Раньше других начинают миелинизировагься периферические нервы, затем аксоны в спинном мозге, стволовой части головного мозга, мозжечке и позже - в больших иолуша- риях головного мозга.

Рис. 4. 20. Образование миелиновой оболочки нервного волокна в периферической нервной системе (а) и в ЦНС (б)

Миелинизация спинномозговых и черепно-мозговых нервов начинается на четвертом месяце внутриутробного развития. Двигательные волокна покрываются миелином к моменту рождения ребенка, а большинство смешанных и чувствительных нервов - к трем месяцам после рождения. Многие черепно-мозговые нервы миелинизируются к полутора-двум годам. К двум годам миелинизируются слуховые нервы. Полная миелинизация зрительного и языкоглоточного нервов отмечается только у трех-четырехлетних детей, у новорожденных они еще не миелинизированы. Ветви лицевого нерва, иннервирующие область губ, миелинизируются с 21-й до 24-й недели внутриутробного периода, другие его ветви приобретают миелиновую оболочку значительно позже. Этот факт свидетельствует о раннем формировании морфологических структур, при участии которых осуществляется сосательный рефлекс, хорошо выраженный к моменту рождения ребенка.

Проводящие пути спинного мозга хорошо развиты к моменту рождения и почти все миелинизированы, за исключением пирамидных путей (они миелинизируются к третьему - шестому месяцам жизни ребенка). В спинном мозге раньше других миелинизируются моторные пути. Еще во внутриутробный период они оказываются сформированными, что проявляется в спонтанных движениях плода.

Миелинизация нервных волокон в головном мозге начинается во внутриутробном периоде развития и закапчивается после рождения (рис. 4.21). В отличие от спинного мозга, здесь раньше других миелинизируются афферентные пути и сенсорные области, а двигательные - через пять-шесть месяцев, а некоторые и значительно позже после рождения. К трем годам миелинизация нервных волокон в основном заканчивается, но рост нервов в длину продолжается и после трехлетнего возраста.

В процессе развития мозга в формировании упорядоченных связей между миллиардами нервных клеток решающая роль принадлежит активности самих нейронов, а также влиянию внешних факторов.

Хотя человек рождается с полным набором нейронов, которые образуются в эмбриональный период, мозг новорожденного по массе составляет 1/10 часть мозга взрослого. Увеличение массы мозга происходит за счет увеличения размеров нейронов, а также числа и длины их отростков.

Процесс развития нервных сетей можно разделить на три этапа. Первый этап включает образование незрелых нейронов (нейробластов) путем деления в соответствии с генетической программой. Незрелый нейрон, еще не имеющий аксона и дендритов, обычно мигрирует из места своего образования в соответствующий участок нервной системы. Нейроны могут мигрировать на большие расстояния. Способ их перемещения напоминает движение амебы. Миграцию направляют глиальные клетки (рис. 4.22, а). Незрелые мигрирующие нейроны тесно примыкают к глиальным клеткам и как бы ползут по ним. Достигнув своего постоянного места расположения, клетка образует контакты с другими нейрона-


Рис. 4.21.


Рис. 4.22.

а - незрелые нервные клетки, мигрирующие вдоль отростков радиальных глиальных клеток; 6 - постепенное утолщение стенки нервной трубки и установление ориентации пирамидных нейронов будущей коры больших

полушарий

ми. Сразу же устанавливается ориентация клеток: например, пирамидные нейроны выстраиваются в ряды так, что их ден- дриты направлены к поверхности коры, а аксоны - в подлежащее белое вещество (рис. 4.22, б).

Второй этап характеризуется интенсивным ростом уже мигрировавшего нейрона за счет образования аксона и денд- ритов. На конце отростка, идущего от тела клетки, имеется утолщение - конус роста (см. рис. 4.19). В нем скапливаются необходимые для роста аксона вещества. Конус роста перемещается с помощью амебоидных движений в сторону клетки-мишени, прокладывая себе путь через окружающие ткани. Движение конуса роста происходит с участием микро- шипиков, отходящих от более крупных выпячиваний. Часть микрошипиков, вступивших в контакт с клеткой-мишенью, образуют синапсы, остальные - втягиваются обратно. В большинстве случаев аксоны «правильно выбирают» направление и находят «свою» мишень с высокой точностью. Исследования на молекулярном уровне показали, что конусы роста аксонов «распознают» нужное направление благодаря специфическим веществам на поверхности клеток, расположенных вдоль пути роста. Эти биологически активные вещества - молекулярные метки - выделяются самими клетками-мишенями. Удаление таких меток приводит к бесцельному росту аксона. Выбор мишени происходит не сразу и включает в себя процесс корректировки многих ошибочных первоначальных связей. Биологически активные вещества, выделяемые клеткой-мишенью, регулируют также ветвление отростков.

Определенные группы нейронов выделяют специфические метки, которые узнаются другими нейронами, благодаря этому возможно установление высокоизбирательных нервных связей. Кроме того, имеются специфические биологически активные вещества, ускоряющие рост нейронов. Например, фактор роста нервов влияет на рост и созревание нейронов спинальных и симпатических ганглиев.

Важными моментами в процессе развития нейрона считают появление способности к генерации и проведению нервных импульсов, а также формирование синаптических контактов.

Третий этап - образование «адресных» и стабильно работающих нервных связей. Формирование нервных сетей требует особенно высокой точности. Нередко причиной отклонений в поведении человека может быть «ошибка в адресе» межнейронных синаптических связей. Активное синаптическое взаимодействие нейронов происходит в процессе прохождения импульсов. При регулярном и интенсивном поступлении сигналов в виде ПД синаптические связи в сетях нейронов укрепляются и, напротив, ослабление или полное прекращение стимуляции нарушает синаптическое взаимодействие и даже приводит к деградации не задействованных синапсов. Разрушение таких контактов, сокращение отростков и гибель части образовавшихся нервных клеток запрограммированы в онтогенезе. Таким путем устраняется заведомо избыточное число образующихся в раннем эмбриогенезе нейронов и их контактов. Сохраняются активно работающие нейронные структуры, а именно те, которые получают достаточный приток информации из внешней и внутренней среды организма.

В процессе онтогенеза в нейронах происходят и другие изменения. Так, после рождения увеличиваются длина и диаметр аксонов (рис. 4.23) и продолжается их миелинизация. Эти процессы заканчиваются в основном к 9-10 годам. При этом существенно повышается скорость проведения возбуждения по нервным волокнам: у новорожденных она составляет только 5% уровня взрослых. Другая причина увеличения

Рис. 4.23.

скорости проведения импульсов - возрастание числа ионных каналов в нейронах, повышение мембранного потенциала и амплитуды ПД. Эффекты положительного влияния стимуляции на развитие мозга ограничены чувствительным периодом. Ослабление стимуляции в этот период не лучшим образом сказывается на морфофункциональном формировании мозга.

Поступление достаточного объема многосторонней информации в развивающийся мозг способствует появлению нейронов, специфически реагирующих на сложные комбинации сигналов. Этот механизм, по-видимому, лежит в основе способности человека отражать реально существующие феномены внешнего мира на основе индивидуального (субъективного) опыта.

Замечательная особенность нервной системы взрослого человека - точность межнейронных связей, но для ее достижения с раннего детства необходима постоянная стимуляция мозга. Дети, которые провели первый год жизни в ограниченном, бедном информацией окружении, развиваются медленно. Для нормального развития мозга ребенок должен получать из внешней среды разные виды сенсорных стимулов: тактильных, зрительных, слуховых, в том числе обязательно речевых. Вместе с гем положительная роль «сверхстимуляции» в развитии нервной системы не доказана.

Связи между центральными нейронами наиболее активно формируются в период от рождения до 3 лет (рис. 4.24; 4.25). От того, как нейроны соединяются друг с другом на начальных этапах формирования мозга, во многом зависят его индивидуальные особенности. Информация, поступающая в мозг,


Рис. 4.24.

обеспечивает создание все новых сочетаний соединений и увеличение числа контактов между нейронами за счет роста их дендритов. Интенсивная нагрузка мозга до самого преклонного возраста защищает его от преждевременной деградации. Известно, что у образованных людей, постоянно пополняющих свои знания, число связей между нейронами возрастает, причем высокий уровень образования даже снижает опасность заболеваний, связанных с нарушением этих связей.

Известно, что у человека после рождения каждый нейрон па протяжении жизни сохраняет способность к росту, обра-


Рис. 4.25.

зованию отростков и новых синаптических связей, особенно при наличии интенсивной сенсорной информации. Под ее влиянием синаптические связи могут также перестраиваться и менять медиатор. Это свойство лежит в основе процессов научения, памяти, адаптации к постоянно меняющимся условиям внешней среды, восстановительных процессов в период реабилитации после различных заболеваний и перенесенных травм.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Нервное волокно – это удлиненный отросток нейронов, покрытый леммоцитами и миелиновой или безмиелиновой оболочкой. Основной его функцией является проводимость . В периферической и центральной нервной системе преобладают мякотные (миелиновые) нервные волокна, которые иннервируют скелетную мускулатуру, безмякотные находятся в симпатическом отделе вегетативной системы и распространяются на внутренние органы. Волокна, не имеющие оболочки, называются голыми осевыми цилиндрами.

Нервное волокно имеет в основе отросток нейрона, который образует своеобразную ось. Снаружи он окружен миелиновой оболочкой с биомолекулярной липидной основой, состоящей из большого количества витков мезаксона, который по спирали накручивается на нейроновую ось. Таким образом, происходит миелинизация нервных волокон.

Миелиновые нервные волокна периферической системы сверху дополнительно покрыты вспомогательными Шванновскими клетками, поддерживающими аксон и питающими тело нейрона. Поверхность мякотной мембраны имеет интервалы – перехваты Ранвье, в этих местах осевой цилиндр прикрепляется к наружной Шванновской мембране.

Миелиновый слой не обладает электропроводящими свойствами, их имеют перехваты. Возбуждение происходит в ближайшем к месту воздействия внешнего раздражителя интервале Ранвье. Импульс передается скачкообразно, от одного перехвата к другому, это обеспечивает высокую скорость распространения импульса.

Миелиновые нервные волокна регулируют обмен веществ в мышечной ткани, обладают высоким сопротивлением по отношению к биоэлектрическому току.

Промежутки Ранвье генерируют и усиливают импульсы. У волокон центральной нервной системы нет Шванновской мембраны, эту функцию выполняют олигодендроглии.

Безмякотные ткани имеют несколько осевых цилиндров, у них нет миелинового слоя и перехватов, сверху покрыты Шванновскими клетками, между ними и цилиндрами образуются щелевидные пространства. Волокна имеют слабую изоляцию, допускают распространение импульса из одного отростка нейрона в другой, на всем протяжении контактируют с окружающей средой, скорость проведения импульсов гораздо ниже, чем у мякотных волокон, при этом организму требуется большее количество энергии.

Из мякотных и безмякотных отростков нейронов формируются крупные нервные стволы, которые, в свою очередь, разветвляются на более мелкие пучки и заканчиваются нервными окончаниями (рецепторные, двигательные, синапсы).

Нервные окончания – это конец миелиновых и безмиелиновых нервных волокон, который формирует межнейронные контакты, рецепторные и двигательные окончания.

Принципы классификации

Разные типы нервных волокон имеют неодинаковую скорость проведения импульсов возбуждения, это зависит от их диаметра, длительности потенциала действия и степени миелинизации. Существует прямо пропорциональная зависимость между скоростью и диаметром волокна.

Структурно-функциональный метод классификации нервных волокон Эрлангера-Гассера по :

  • Миелиновое нервное волокно группы А: α, β, Υи δ. Самый большой диаметр и толстую оболочку имеют ткани α – 20 мк, они обладают хорошей скорость проводимости импульсов – 120 м/сек. Эти ткани иннервируют источник возбуждения из столба спинного мозга к скелетным рецепторам мышц, сухожильям, отвечают за тактильные ощущения.

Остальные типы волокон имеют меньший диаметр (12 мк), скорость проведения импульса. Эти ткани передают сигналы от внутренних органов, источников боли в ЦНС.

  • Миелиновые волокна группы В относятся к . Общая скорость проведения импульса составляет 14 м/сек, потенциал действия в 2 раза больше, чем у волокон группы А. Миелиновая оболочка слабо выражена.
  • Безмиелиновые волокна группы С имеют очень маленький диаметр (0,5 мк) и скорость возбуждения (6 м/сек). Эти ткани иннервируют . К данной группе также относятся волокна, которые проводят импульсы от центров боли, холода, тепла и давления.

Отростки нейронов делят на афферентные и эфферентные. Первый тип обеспечивает передачу импульсов от рецепторов тканей в центральную нервную систему. Второй тип передает возбуждение от ЦНС к рецепторам тканей.

Функциональная классификация нервных волокон афферентного типа по Ллойду-Ханту:

Демиенилизация

Процесс демиелинизации нервных волокон – это патологическое повреждение миелиновой оболочки, которое вызывает нарушение функционирования тканей. Вызывают патологию воспалительные процессы, метаболические нарушения, нейроинфекция, интоксикация или ишемия тканей. Миелин замещается фиброзными бляшками, в результате нарушается проведение импульсов.

Первый тип демиелинизации – это миелинопатия, вызванная аутоиммунными реакциями организма, болезнью Канавана, амиотрофией Шарко-Мари-Тута.

Второй тип – это миелинокластия. Патология характеризуется наследственной предрасположенностью к разрушению миелиновой оболочки (болезнь Бинсвангера).

Демиелинизирующие заболевания

Заболевания, приводящие к разрушению миелиновой оболочки, чаще всего имеют аутоиммунную природу, другой причиной может быть лечение нейролептиками или наследственная предрасположенность. Разрушение липидного слоя вызывает снижение скорости проведения импульсов раздражения.

Заболевания разделяют на те, которые затрагивают центральную нервную систему и патологии, повреждающие периферическую сеть. Болезни, которые влияют на работу ЦНС:

  • Миелопатия спинного мозга возникает в результате сдавливания миелиновых волокон межпозвоночными грыжами, опухолями, костными осколками, после . У больных снижается чувствительность, мышечная сила в области поражения, возникают парезы рук или ног, нарушается работа кишечника, мочевыводящей системы, развивается атрофия мышц нижних конечностей.
  • Лейкодистрофия головного мозга вызывает поражение белого вещества. У пациентов нарушена координация движений, они не могут держать равновесие. Развивается мышечная слабость, появляются непроизвольные судороги, . Постепенно ухудшается память, интеллектуальные способности, зрение и слух. На поздних стадиях возникает слепота, глухота, полный паралич, трудности во время проглатывания пищи.
  • головного мозга чаще всего поражает мужчин старше 60 лет. Основными причинами является артериальная гипертензия и наследственная предрасположенность. У пациентов ухудшается память и внимание, появляется заторможенность, трудности с речью. Замедляется походка, нарушается координация движений, появляется недержание мочи, больному тяжело глотать пищу.
  • Синдром осмотической демиелинизации характеризуется распадом миелиновых оболочек в тканях головного мозга. У больных отмечается расстройство речевого аппарата, постоянное чувство сонливости, депрессии или повышенная возбудимость, мутизм, парез всех конечностей. На ранних стадиях заболевания процесс демиелинизации обратим.
  • Рассеянный склероз проявляется онемением одной или двух конечностей, частичная или полная потеря зрения, боль при движении глаз, головокружение, быстрая утомляемость, тремор конечностей, нарушение координации движений, покалывание в различных частях тела.
  • Болезнь Девика – это воспалительный аутоиммунный недуг, который поражает зрительный нерв и ствол спинного мозга. К симптомам относится различная степень нарушения зрения, вплоть до слепоты, парапарезы, тетрапарезы, нарушение функционирования органов малого таза.

Симптомы заболеваний зависят от области поражения миелиновых волокон. Выявить процесс демиелинизации можно с помощью компьютерной томографии, магниторезонансной терапии. Признаки обнаруживаются на электромиографии.

Обеспечивается олигодендроцитами. Каждый олигодендроглиоцит образует несколько «ножек», каждая из которых оборачивает часть какого-либо аксона. В результате один олигодендроцит связан с несколькими нейронами. Перехваты Ранвье здесь шире, чем на периферии. Согласно исследованию 2011 г. мощную миелиновую изоляцию в мозге получают наиболее активные аксоны, что позволяет им далее работать ещё эффективнее. Важную роль в этом процессе играет сигнализатор глутамат.

в миелинизированные волокна в НС проводят импульс быстрее, чем немиелинизоровнные

Миелиновая оболочка - это не клеточная мембрана. Оболочку образуют шванновские клетки, типа рулета, они создают области с высоким сопротивлением, и ослабляют ток утечки из аксона. Получается, что потенциал как бы перескакивает от перехваток перехвату, от этого и скорость проведения импульса становится выше.

8. Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками , причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниема ксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

9. Химический синапс - особый тип межклеточного контакта между нейроном и клеткой-мишенью. Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм).Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.


10. Нервно-мышечный синапс (мионевральный синапс) - эффекторное нервное окончание на скелетном мышечном волокне.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

1. Пресинаптическое окончание
2. Сарколемма
3. Синаптический пузырек
4. Никотиновый ацетилхолиновый рецептор
5. Митохондрия

11. Нейромедиа́торы (нейротрансмиттеры , посредники ) - биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами . Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.

Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается , что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Классификация нейромедиаторов:

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины)

Аминокислоты :

§ Глутаминовая кислота (глутамат)

Катехоламины :

§ Адреналин

§ Норадреналин

§ Дофамин

Другие моноамины :

§ Серотонин

§ Гистамин

А также :

§ Ацетилхолин

§ Анандамид

§ Аспартат

§ Вазоактивный интестинальный пептид

§ Окситоцин

§ Триптамин

12. Нейроглия, или просто глия - сложный комплекс вспомогательных клеток нервной ткани, общный функциями и, частично, происхождением (исключение - микроглия).Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, обеспечивают тканевый гомеостаз и нормальное функц-е клетки, а также осуществляя часть метаболических процессов самого нейрона. Основные функции Нейроглии:

Создание между кровью и нейронами гемато-энцефалического барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь;

Обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей)

Фагоцитоз (удаление погибших нейронов)

Изоляция синапсов (контактные участки между нейронами)

Источники онтогенетического развития нейроглии:появилась в процессе развития нервной системы из материала нервной трубки.

13. Макроглия (от макро... и греч. glнa - клей), клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами. М. - основная ткань нейроглии, часто с ней отождествляемая; в отличие от микроглии, имеет общее с нейронами происхождение из нервной трубки . Более крупные клетки М., образующие астроглию и эпендиму, участвуют в деятельности гемато-энцефалического барьера, в реакции нервной ткани на повреждения и инфекции. Более мелкие, так называемые сателлитные клетки нейронов (олигодендроглия), участвуют в образовании миелиновых оболочек отростков нервных клеток - аксонов, обеспечивают нейроны питательными веществами, особенно в период усиленной активности мозга.

14. Эпе́ндима - тонкая эпителиальная мембрана, выстилающая стенки желудочков мозга и спинномозговой канал. Эпендима состоит из эпендимных клеток или эпендимоцитов, относящихся к одному из четырёх типов нейроглии. В эмбриогенезе эпендима образуется из эктодермы.