Корковые центры. Подкорковые центры К подкорковым слуховым центрам относятся

Средний мозг (mesencephalon) является верхней частью мозгового ствола. Средний мозг делят на дорсальную часть - крышу мозга (tectum) и вентральную - ножки мозга (pedunculi cerebri). Полость среднего мозга представлена узким каналом - Сильвиевым водопроводом (aqueductus cerebri), который соединяет III и IV мозговые желудочки.

Крыша среднего мозга, или пластинка четверохолмия образована двумя верхними (colliculi superior) и двумя нижними холмиками (colliculi inferior). От каждой пары холмиков в направлении промежуточного мозга отходят проводящие пути - пары ручек холмиков (branchii colliculus). Ручки верхних холмиков заканчиваются в латеральных коленчатых телах, а нижних - в медиальных коленчатых телах промежуточного мозга.

На основании мозга, впереди моста лежат ножки мозга - два симметричных толстых расходящихся валика, которые упираются в большие полушария. Между ножками имеется межножковая ямка (fossa interpeduncularis), закрытая задним продырявленным пространством (substantia perforata posterior). На медиальной поверхности каждой ножки выходят волокна III пары глазодвигательного нерва (III - п. oculomotorius). Волокна IV пары блокового нерва (IV- п. trochlearis) отходят от-дорсальной поверхности среднего мозга. Оба нерва среднего мозга являются двигательными.

На поперечном срезе среднего мозга выделяют три отдела:

1) крыша среднего мозга (tectum mesencephali);

2) покрышка (tegmentum mesencephali);

3) основание ножек мозга (basis pedunculi cerebralis).

Наружная поверхность крыши среднего мозга покрыта тонким слоем белого вещества, переходящим в ручки холмиков.

Под этим слоем находятся ядра верхних (nucleus colliculi superioris) и нижних (nucleuscolliculiinferioris) бугров четверохолмия. Ядра верхних бугров имеют слоистое строение. К ним приходят афферентные волокна от зрительного тракта, от спинного мозга по спинотектальным путям, а также коллатерали от латеральной и медиальной петель. Отходят эфферентные волокна к двигательным ядрам ствола и спинного мозга по тектобульбарным и тектоспинальным путям. Верхними ручками передние бугры связаны с латеральными коленчатыми телами. В ядрах нижних бугров заканчивается часть волокон латеральной петли. Эфферентными же волокнами они сплетаются с медиальными коленчатыми телами (по нижним ручкам), а также со спинным мозгом и мозговым стволом (по тектоспинальным и тектобульбарным путям).

32. Вопрос. Первичные зрительные и слуховые центры, находящиеся в среднем мозге.

Верхнее двухолмие является подкорковым зрительным центром, а нижнее двухолмие служит местом переключения слуховых путей и играет роль слухового подкоркового центра. В покрышке среднего мозга имеются красные ядра (nucleus ruber), которые дают начало руброспинальному пути. В красных ядрах заканчиваются волокна верхних ножек мозжечка. Вокруг Сильвиева водопровода располагается центральное серое вещество (substantia grisea centralis). В нем находятся ядра ретикулярной формации среднего мозга, получающие коллатерали от проходящих здесь восходящих и нисходящих путей, а свои длинные аксоны направляющие к другим мозговым структурам и к коре больших полушарий. Ядра блокового нерва (IV пара) лежат в центральной части серого вещества, непосредственно у Сильвиева водопровода, на уровне нижних бугров четверохолмия. Под дном водопровода, на уровне верхних бугров четверохолмия, находятся ядра глазодвигательных нервов (III пара). Латерально и кверху от красных ядер находятся слои медиальных петель, идущих от покрышки моста. Между покрышкой и основанием ножек располагается ядро, состоящее из клеток, богатых меланином, - черная субстанция (substantia nigra).

Основание ножек мозга лишено ядер и образовано нисходящими из коры больших полушарий корковоспинномозговыми, корковомостовыми путями.

Средний мозг является первичным зрительным и слуховым центром, осуществляющим быстрые рефлекторные реакции (оборонительные и ориентировочные). Кроме того, красные ядра и черная субстанция являются ядрами, контролирующими тонус мускулатуры и движения.

  • 33. Классификация мышц. Понятие об анатомическом и физиологическом поперечниках, подвижной и неподвиной точках
  • 34. Мышцы спины. Места прикрепления и функции
  • 35. Мышцы живота. Место прикрепления и функции
  • 36. Мышцы груди. Места прикрепления и функции
  • 37. Мышцы шеи. Места прикрепления и функции
  • 38. Жевательные мышцы. Места прикрепления и функции
  • 39. Мимические мышцы. Особенности строения, функции
  • 40. Мышцы плечевого пояса. Места прикрепления и функции
  • 41. Мышцы плеча. Места прикрепления и функции
  • 42. Мышцы передней поверхности предплечья. Места прикрепления и функции
  • 43.Мышцы задней поверхности предплечья. Места прикрепления и функции
  • 44. Мышцы тазового пояса. Места прикрепления и функции
  • 45. Мышцы бедра. Места прикрепления и функции
  • 46. Мышцы голени. Места прикрепления и функции
  • 47. Полость рта, отделы полости рта, губы, твёрдое и мягкое нёбо: строение, функции иннервация
  • 48. Зубы
  • 49. Язык
  • 50.Слюнные железы
  • 51. Глотка. Лимфоидное кольцо глотки
  • 52. Пищевод
  • 53. Желудок
  • 54. Двенадцатиперстная кишка
  • 55. Тонкая кишка
  • 56. Толстая кишка
  • 57. Печень: топография в брюшной полости, макроструктурная организация, функции. Желчный пузырь: отделы и протоки
  • 58. Печнь: кровоснабжение и организация печеночной дольки. Воротная система печени
  • 59. Поджелудочная железа
  • 60. Брюшина. Понятие о брыжейке. Функции брюшины
  • 61.Носовая полость. Околоносовые пазухи
  • 62. Гортань. Голосовые связки и звукообразование
  • 63. Трахея и бронхи. Ветвление бронхиального дерева
  • 64. Лёгкие: микростроение и макростроение. Плевральные оболочки и полость
  • 65. Средостенье
  • Верхнее и нижнее средостение
  • Переднее, среднее и заднее средостение
  • 66. Мочевые органы. Расположение почек в брюшной полости: особенности топографии, фиксирующий аппарат почки. Макроструктура почки: поверхности, края, полюса. Почечные ворота
  • 67. Внутреннее строение почки. Пути тока крови и мочи. Классификация нефронов. Сосудистое русло почек
  • 68. Пути выведения мочи. Почечные чашки и лоханка, форникальный аппарат почки и его назначение. Мочеточник: строение стенки и топография
  • 69. Мочевой пузырь. Мужской и женский мочеиспускательный каналы
  • 70.Строение мужских половых желез. Придаток яичника. Семенные пузырьки, бульбоуретальные железы,предстательная железа.
  • 71. Строение женских половых желез. Маточные трубы и их части, матка. Строение стенки и расположение друг относительно друга
  • 72. Гуморальная регуляция, общая характеристика эндокринной системы. Классификация эндокринных органов
  • 73. Бранхиогенные железы внутренней секреции: строение, топография, функции
  • 74. Надпочечники
  • 75. Гипофиз
  • 76. Сердце. Перикард
  • 77. Особенности строения миокарда, предсердий и желудочков сердца. Типы кардиомиоцитов. Проводящая система сердца
  • 78. Камеры сердца. Ток крови в сердце. Клапаны сердца
  • 79. Строение стенки артерий. Типы ветвления, топография по п.Ф. Лесгафту
  • 80. Аорта и её части. Ветви дуга аорты и грудной части аорты
  • 81. Аорта и её части. Париетальные и висцеральные ветви брюшной части аорты
  • 82. Общая сонная артерия. Кровоснабжение головного мозга.
  • 83. Подключичная, подмышечная артерии: топография и ветви и области кровоснабжаемые ими
  • Вопрос84.Плечевая артерия,артерии предплечья,дуги и артерии кисти.
  • 85. Общая, наружная и внутренняя подвздошная артерии
  • 86.Бедренная и подколенная артерии, артерии голени и стопы
  • 87.Вены:строение стенки,клапаны. Закономерности распределения вен.
  • 88. Верхняя полая вена.
  • 89. Нижняя полая вена
  • 90. Вены верхней конечности
  • 91. Вены нижней конечности
  • 92. Кровообращение плода. Перестройка системы кровообращения при рождении.
  • 93. Лимфатическая система. Лимфатические узлы и их строения
  • 94.Общий план строения нервной системы. Классификация по топографическому принципу и анатомо-функциональная классификация. Нейроны и глия.
  • 95. Краткая история становления нейроморфологии. Морфологическая и морфо-функциональная классификация нейронов
  • 96. Эволюция нервной системы
  • 98. Микроструктура серого вещества спинного мозга:ядра спинного мозга и их расположение.
  • 99. Организация белого вещества спинного мозга. Проводящие пути переднего, бокового и заднего канатиков
  • 100. Простая соматическая рефлекторная дуга (моно- и полисинаптическая)
  • 101. Собственный зацитный аппарат спинного мозга (твёрдая, паутинная и сосудистая оболочки)
  • 102. Головной мозг. Борозды первой, второй и третей категории, доли конечного мозга
  • 103. Система желудочков мозга, церебро-спинальная жидкость, её состав и функции
  • 104. Продолговатый мозг. Организация серого и белого вещества. Понятие о ретикулярной формации
  • 105. Варолиев мост. Организация серого и белого вещества
  • 106. Мозжечок
  • 107.Средний мозг. Ядра среднего мозга
  • 108. Промежуточный мозг
  • Третий (III, 3) желудочек, ventriculus tertius. Стенки третьего желудочка. Топография третьего желудочка.
  • Эмбриональное развитие
  • 110. Базальные ядра конечного мозга. Понятие о стриопаллидарной системе, нео- и палеостриатуме
  • 111. Белое вещество конечного мозга
  • 112. Лимбическая система
  • Функции лимбической системы
  • 113. Проводящие пути проприотептиовной чувствительности (мышечно-суставного чувства, стереогноза) (схемы)
  • 114. Проводящие пути болевой и температурной чувствительности (схема)
  • 115. Провоящие пути пирамидной системы (корково-ядерный, корково-спинной) (схемы)
  • 116. Спинно-мозговые нервы: их образования. Сплетения спинно-мозговых нервов,области иннервации. Черепные нервы:ядра и области иннервации.
  • 117.Периферическая нервная система. Закономерности локализации периферических нервов,строение,оболочка нервных стволов. Классификация нервных волокон.
  • 118. Симпатический отдел автономной нервной системы: локализация ядер,симпатический ствол и его отделы,серые и белые соединительные ветви.
  • 120.Общий план строения автономной нервной системы, физиологическое значение, функциональный антагонизм. Структура рефлекторной дуги вегетативного рефлекса, отличия от рефлекторной дуги.
  • 124. Глазное яблоко. Мышцы ресничного тела и их иннервация
  • 125. Глаз и вспомогательные органы. Мышцы глазного яблока и их иннервация. Слёзный аппарат
  • 126. Клеточное строение сетчатки глаза. Путь света в сетчатке. Проводящие пути зрительного анализатора. Подкорковые центры зрения (специфический и неспецифический). Корковый центр зрения
  • 127. Наружное и среднее ухо. Значение мышц среднего уха
  • 128.Внутреннее ухо. Внутреннее строение улитки. Распространение звука во внутреннем ухе
  • 129. Проводящие пути слухового анализатора. Подкорковый и корковыйцентры слуха
  • 130.Система полукружных канальцев, сферический и эллиптический мешочки. Вестибулорецепторы
  • 131.Проводящие пути вестибюлярного аппарата. Подкорковые и корковые центры
  • 132. Орган обоняния
  • 133. Орган вкуса
  • 134. Кожный анализатор. Виды кожной чувствительности. Строение кожи. Производные эпидермиса, производные кожи. Корковый центр кожной чувствительности
  • 1. Боль
  • 2 И 3. Температурные ощущения
  • 4. Прикосновение, давление
  • 126. Клеточное строение сетчатки глаза. Путь света в сетчатке. Проводящие пути зрительного анализатора. Подкорковые центры зрения (специфический и неспецифический). Корковый центр зрения

    В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.

    Ганглионарныенейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковыеиколбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через эпителий или хориоидею, которые являются непрозрачными.

    Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера)

    Кроме фоторецепторных и ганглионарныхнейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.

    Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором - сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.

    Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.

    Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.

    Каждая сетчатка у человека содержит около 6-7 млн колбочек и 110-125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.

    Проводящий путь зрительного анализатора обеспечивает проведение нервных импульсов от сетчатки в корковые центры полушарий больного мозга и представляет собой сложную цепь нейронов, связанных друг с другом при помощи синапсов.

    Направляясь к сетчатке, луч света проходит через светопреломляющие среды глазного яблока (роговицу, водянистую влагу передней и задней камер глаза, хрусталик, стекловидное тело) и воспринимается фоторецепторными клетками, тела которых лежат в наружном ядерном слое, в частности, их окончаниями - рецепторами (палочками и колбочками). Таким образом, фоторецепторные клетки сетчатки являются первыми нейронами.

    Необходимо отметить, что благодаря светопреломляющим средам глазного яблока, пучок света концентрируется в области места наибольшей остроты зрения - пятне сетчатки с его центральной ямкой. В центральной ямке сосредоточены только колбочковидные зрительные клетки, с которыми связано восприятие цвета. Их в сетчатке насчитывается 5-7 млн. Колбочковидные зрительные клетки являются элементами дневного зрения, поэтому цвета в полу тьме воспринимаются ими очень слабо.

    Палочковидные зрительные клетки специализированы для видения предметов в сумерках. В сетчатке глаза человека этих клеток в общей сложности насчитывается около 75-150 млн.

    Достигающий глубоких слоев сетчатки свет вызывает фотохимические реакции за счет зрительных пигментов. Энергия светового раздражения преобразуется фоторецепторами сетчатки (палочковидными и колбочковидными зрительными клетками ) в нервные импульсы, которые устремляются ко вторым нейронам, расположенным здесь же, в сетчатке.

    Вторые нейроны представлены биполярными клетками , составляющими внутренний ядерный слой. Каждый биполярный нейроцит с помощью своих отростков-дендритов контактирует одновременно с несколькими фоторецепторными нейронами.

    В ганглиозном слое сетчатки лежат тела третьих нейронов . Это крупные ганглиозные (мультиполярные) клетки. Обычно одна ганлиозная клетка (ганглиозный нейроцит ) контактирует с несколькими биполярными клетками. Аксоны ганглиозных клеток, сближаясь, образуют ствол зрительного нерва.

    Место выхода зрительного нерва из сетчатки представлено диском зрительного нерва (слепое пятно). Оно не содержит фоторецепторов.

    Покидая глазницу, зрительный нерв через зрительный канал вступает в полость черепа и здесь на основании мозга образует перекрест, причем перекрещивается только медиальная группа волокон, следующих от внутренних отделов сетчатки, а волокна от наружных отделов сетчатки не перекрещиваются.

    Таким образом, каждое полушарие получает импульсы одновременно из правого и левого глаза . Все это обеспечивает синхронность движений глазных яблок и бинокулярное зрение, в то время как у земноводных и пресмыкающихся движения глаз автономные, зрение - монокулярное, что связано с полным перекрестом волокон зрительного нерва.

    Участок зрительною пут от сетчатки до зрительного перекреста называется зрительным нервом, после перекреста - зрительным трактом .

    Каждый зрительный тракт содержит нервные волокна от одноименных половин сетчатки обоих глаз. Так, правый зрительный тракт - от правой половины правого глаза (волокна в зрительном перекресте не перекрещиваются) и от правой половины левого глаза (волокна полностью переходят на противоположную сторону в зрительном перекресте). Левый зрительный тракт - от левой половины левою глаза (волокна перекрещенные) и от левой половины правого глаза (волокна полностью перекрещенные).

    У наружного края ножки мозга зрительный тракт делится на три пучка, направляющихся к подкорковым центрам зрения . Большая часть этих волокон заканчивается на клетках латерального коленчатого тела, меньшая - на клетках подушки таламуса и небольшая часть, относящаяся к зрачковому рефлексу, - в верхних холмиках крыши среднего мозга. В этих образованиях лежат тела четвертых нейронов.

    Аксоны четвертых нейронов , тела которых расположены в латеральном коленчатом теле и подушке таламуса, в виде компактного пучка проходят через заднюю часть задней ножки внутренней капсулы, затем, веерообразно рассыпаясь, образуют зрительную лучистость (пучок Грациоле*) и достигают коркового ядра зрительного анализатора, лежащего на медиальной поверхности затылочной доли по сторонам от шпорной борозды.

    * Гранциоле Луи (Gratiolet Louis Pierre, 1815-1885) - французский врач, анатом и физиолог. Работал в Париже, с 1853г. преподавал анатомию в Парижском ун-те. с 1862г. -профессор зоологии там же. Занимался сравнительной анатомией, антропологией, психологией. Известны его работы по анатомии мозга. Им описан пучок нервных волокон в большом мозге, идущий от латерального коленчатого тела и подушки таламуса к зрительному центру в коре затылочной доли.

    "

    Одним из отделов большого головного мозга является самая маленькая его часть – средний мозг (mesencephalon), представленный в виде четырех «холмиков», в которые заключены ядра, выполняющие функцию центров зрения и слуха, проводником их сигналов. «Холмики» mesencephalon являются ключевой частью в области переработки информации, воспринимаемой органами чувств.

    Что такое средний мозг

    Между мостом и промежуточным мозгом находится серое вещество, размером около 2 см длиной и 3 см шириной, представляет собой второй верхний (superius) зрительный проводной центр. Там же расположены ядра медиального слухового анализатора, который выделился, стал отдельной структурой уже у древнейших людей и необходим для более качественной передачи сигналов от органов чувств к конечным слуховым центрам.

    Расположение

    Ядра mesencephalon, варолиев мост и продолговатый мозг составляют важнейшую структуру – ствол большого головного мозга, являющийся продолжением спинного. Расположилась стволовая часть в канале первого, второго шейного позвонков и частично в затылочной ямке. Комплекс нейронов иногда рассматривают не как отдельную самостоятельную часть, а как некую продольную разделительную прослойку или бугор мозгового вещества между варолиевым мостом и промежуточным мозгом.

    Строение среднего мозга

    Через стволовую часть проходят проводящие пути, связывающие кору больших полушарий с нейронами спинно-мозгового вещества и стволом, в которых выделяют:

    • подкорковые первичные центры зрительного анализатора;
    • подкорковые первичные центры слухового анализатора;
    • все проводящие пути, связывающие ядра больших полушарий со спинным мозгом;
    • комплексы (пучки) белого вещества, обеспечивающие прямое взаимодействие всех отделов головного мозга.

    Исходя из этого, средний мозг (mesencephalon) состоит из двух основных частей: покрышки (или крыши), которой находятся первичные подкорковые центры слуха и зрения, ножки мозга с межножковым пространством, представляющих проводящие пути. Важнейшей составляющей является сильвиев водопровод – канал, соединяющий полость третьего желудочка с пазухой четвертого.

    Водопровод со всех сторон окружает серое и белое центральное вещество. Серое вещество содержит ретикулярную формацию, ядра черепных нервов. В месте перехода водопровода в четвертый желудочек формируется мозговой парус (на латыни velum medullare). На боковых сечениях сильвиев водопровод имеет вид треугольника или узкой щели и выступает как ориентировочный элемент, который помогает отмечать местоположение мозговых отделов на рентгеновских снимках.

    Крыша

    Пластинка четверохолмия или крыша среднего мозга представляет собой две пары бугорков – верхние и нижние. Между ними пролегает большая щель –субпинеальный треугольник. От всех бугорков в направлении к нейронам больших полушарий отходят пучки волокон или коленчатых тел. Первая пара холмиков представляет собой первичные зрительные центры, а вторая – первичные слуховые.

    Ножки

    Два толстых тяжа, берущие свое начало из-под варолиева моста, называются ножками. В них размещены несколько групп нервных клеток чувствительного назначения вместе с нейронами двигательного. В мозговом веществе выделяют образования черного и красного цвета, которые регулируют произвольные, непроизвольные движения волокон поперечно-полосатой мышечной ткани.

    Красные ядра

    Структура, напрямую регулирующая координацию всех произвольных движений человека наравне с мозжечковыми нейронами. Красные ядра состоят из двух частей: мелкоклеточной, являющейся основой проводящих путей, а также крупноклеточной – образующей основу ядер. Располагаются в верхней покрышке рядом с черной субстанцией, представляют собой основные пирамидальные центры двигательной активности – основную часть мозга, контролирующую все осознанные и рефлекторные движения человеческого тела.

    Черная субстанция

    Местоположение черной субстанции в виде полумесяца – между покрышкой и ножками. В веществе содержится много пигмента меланина, который придает субстанции темный цвет. Принадлежит субстанция к экстрапирамидной двигательной системе, регулирует преимущественно тонус мышц и как будут выполняться автоматические движения. Особенность мозгового вещества состоит в том, что если черное вещество по каким-то причинам не выполняет свою функцию, то ее берут на себя красные ядра среднего мозга.

    Функции среднего мозга

    Долгое время сети ядер приписывали лишь одно назначение в анатомии – разделение ствола и больших полушарий. В ходе дальнейших исследований стало понятно, что они выполняют практически все функции, присущие высокодифференцированной нервной ткани, являются точкой пересечения большей части чувствительных нервных путей. Выделяют следующие функции среднего мозга человека:

    1. Регуляция физиологии двигательной реакции на сильный внешний раздражитель (боль, яркий свет, шум).
    2. Функция бинокулярного зрения – обеспечение способности видеть одновременно четкое изображение двумя глазами.
    3. Реакция в органах зрения, носящая вегетативный характер, проявляется аккомодацией.
    4. Рефлексы среднего мозга, обеспечивающие одновременный поворот глаз и головы на внешний раздражитель любой силы.
    5. Центр краткой обработки первичной сенсорного, чувствительного сигнала (зрение, слух, обоняние, осязание) и дальнейшее его направление в основные центры анализаторов).
    6. Регулировка осознанного и рефлекторного тонуса скелетной мускулатуры, позволяющая произвольные мышечные сокращения.

    Видео

    ПЛАН:

    Периферический отдел слуховой системы

    Центральный отдел слуховой системы.

    Особенности развития органа слуха у детей

    1.Слух представляет собой функцию организма, обеспечивающую восприятие звуковых колебаний в конкретной среде обитания. У человека эта функция реализуется совокупностью механических, рецепторных и центральных нервных структур, образующих слуховой анализатор, или слуховую сенсорную систему.

    Слуховая сенсорная система - совокупность периферических и мозговых нервных структур, обеспечивающих восприятие звуковых колебаний. Слуховая сенсорная система состоит из периферического и центрального отделов.

    Периферический отдел включает наружное, среднее и внутреннее ухо.

    Центральный отдел представлен подкорковыми и корковыми центрами слуха.

    На разных уровнях эволюционного развития и тесной связи с особенностями среды обитания- водной, наземной, воздушной- сложились разнообразные формы организации слуховой системы с различными функциональными возможностями восприятия тех или иных характеристик звуковых сигналов.

    Итак, вернёмся к периферическому отделу слуховой системы.

    Наружное ухо.

    Наружное ухо представлено ушной раковиной и наружным слуховым проходом. Ушная раковина состоит из хрящевой ткани, покрытой кожей. Она переходит непосредственно в наружный слуховой проход. Кпереди от наружного слухового прохода расположен хрящевой выступ –козелок. Мочка уха – нижняя часть ушной раковины, она состоит из мягкой ткани и не содержит хряща. Наружный слуховой проход- у взрослого человека имеет длину 2,5-3,0 см. Начальная его часть состоит из хрящевой ткани. Большая (внутренняя) часть наружного слухового прохода-костная трубка- представляет собой часть височной кости черепа. Наружный слуховой проход образует изгиб в месте перехода хрящевой части в костную. На всём протяжении наружный слуховой проход покрыт кожей, в которой находятся сальные и серные железы, выделяющие ушную серу- воскообразное защитное вещество. Несмотря на значительные размеры, наружные структуры уха человека играют относительно небольшую роль в процессах восприятия звука. Функции наружного уха (ушная раковина, наружный слуховой проход и внешняя сторона барабанной перепонки) сводятся к обеспечению направленного приёма звуковых волн. Ушные раковины являются рупором и способствуют концентрации звуков, исходящих из разных участков пространства. Части наружного уха несут защитную функцию. Они охраняют барабанную перепонку от механических и термических воздействий, обеспечивают постоянную температуру и влажность этой области вне зависимости от колебаний температуры и влажности во внешней среде, благодаря этому поддерживается стабильность упругих свойств барабанной перепонки. Выработка ушной серы защищает от насекомых.



    Барабанная перепонка. Наружный слуховой проход заканчивается барабанной перепонкой, которая передаёт колебания воздуха в наружном ухе по системе косточек среднего уха. Барабанная перепонка, площадь которой составляет 66-70мм2, является границей между наружным и средним ухом. Она имеет форму конуса с вершиной, направленной в полость среднего уха, и расположена под углом 45-50 градусов от наружного прохода. Со стороны наружного слухового прохода барабанная перепонка порыта тонким слоем кожи-эпидермисом. Со стороны среднего уха она покрыта слизистой оболочкой, как и вся оболочка среднего уха.

    Большая часть барабанной перепонки вставлена в костный желобок в глубине слухового прохода и называется натянутой. Меньшая часть, передневерхняя, прикреплена там, где костный желобок прерывается, -это расслабленная часть, или шрапнелевая перепонка. Средняя часть натянутой барабанной перепонки состоит из радиальных и циркулярных фиброзных волокон, которые придают ей особую прочность. В шрапнелевой перепонке фиброзный слой отсутствует.

    Со стороны наружного уха барабанная перепонка выглядит как блестящая серая пластинка овальной формы, в верхнепередней части видно выпячивание-место прикрепления короткого отростка молоточка-косточки среднего уха. В центре барабанной перпонки закреплена рукоятка молоточка. Эта часть, втянутая внутрь среднего уха, называется пупком барабанной перепонки. Основной функцией барабанной перепонки является передача звуковых колебаний в наружном слуховом проходе на систему слуховых косточек. Барабанная перепонка выполняет защитную функцию, так как благодаря фиброзному слою имеет особую прочность и может выдержать воздушное давление до двух атмосфер.

    Среднее ухо.

    Среднее ухо состоит из воздухоносных полостей в толще пирамиды височной кости и включает:

    - барабанную полость

    -слуховую (евстахиеву)трубу

    -сосцевидный отросток

    Барабанная полость , центральная часть среднего уха, представляет собой узкую неправильную пирамиду объёмом около 1см.куб. В неё помещается примерно 10 капель жидкости или ягодка чёрной смородины. В барабанной полости хорошо различимы шесть стенок:

    Наружная барабанная перепонка

    Внутренняя- отделяет барабанную полость от внутреннего уха

    Верхняя- отделяет барабанную полость от полости черепа

    Нижняя-граничит с крупным кровеносным сосудом-луковицей ярёмной вены

    Передняя- в её нижней части имеется отверстие, ведущее в евстахиеву трубу

    Задняя- в ней расположено отверстие, соединяющее барабанную полость с пещерой сосцевидного отростка

    Во внутренней стенке есть два отверстия-окна: овальное, или окно преддверия (диаметр 3-4 мм), и круглое, или окно улитки (диаметр1-2 мм). В овальное окно вставлено основание стремени, прикреплённое посредством кольцевидной связки. Круглое окно затянуто эластичной плёнкой, которая называется вторичной барабанной перепонкой. В толще внутренней и задней стенок находится канал лицевого нерва, поэтому при заболевании среднего уха он может быть вовлечён в воспалительный процесс.

    Барабанную полость обычно делят на три отдела: верхний, средний и нижний.

    В барабанной полости на тонких связках подвижно укреплены слуховые косточки: молоточек, наковальня и стремечко . Размеры косточек исчисляют миллиметрами. Самая маленькая из них, стремечко, весит2.5мг, её высота 4мм, длина 3мм, ширина 1.4мм.

    Молоточек имеет головку, рукоятку и два отростка (короткий и длинный). Наковальня представлена в виде тела и двух отростков(длинного и короткого). Стремечко состоит из двух ножек, головки и основания.

    Колебания барабанной перепонки приводят в движение молоточек, рукоятка которого прикреплена к пупку барабанной перепонки. Движения молоточка передаются на наковальню и далее на конечную в этой цепи косточку-стремечко. Основание стремечка (подвижная пластина) укреплено с помощью кольцевидной связки в овальном окне улитки, ведущим во внутреннее ухо. Звуковое давление у входа в улитку благодаря передаточной функции слуховых косточек усиливается в 20 раз. Такое усиление несёт большую функциональную роль, так как жидкость внутреннего уха обладает значительно большим акустическим сопротивлением, чем воздух.

    Помимо передаточной функции система слуховых косточек играет защитную роль: при больших интенсивностях стимула меняется характер движения косточек, что обеспечивает изменение объёма перемещаемых жидкостей во внутреннем ухе и, предохраняет слуховую систему от перегрузок. Нарушение деятельности системы слуховых косточек не приводит к полной потере слуха. Благодаря передаче звуковых колебаний круглому окну улитки и костной проводимости слуховая чувствительность сохраняется.

    Напряжение барабанной перепонки и цепи слуховых косточек обеспечивается двумя мышцами: тимпанальной (барабанной), натягивающей барабанную перепонку и прикреплённой к рукоятке молоточка, и стапедиальный (стременной), прикреплённый к головке стремечка. Функция этих мышц в том, что, сокращаясь, они изменяют амплитуду колебаний барабанной перепонки и косточек и тем самым влияют на коэффициент передачи звукового давления на внутреннее ухо. Они поддерживают тонус барабанной перепонки и обеспечивают аккомодацию проводящего звуки аппарата к раздражителям разной интенсивности и частоты. При сокращении мышцы, натягивающей барабанную перепонку, слуховая чувствительность повышается, т.е. происходит настораживание, особенно при неожиданных звуках. Сокращения барабанной и стременной мышц возникают при интенсивностях звуков более 90 дБ и несут защитную функцию. Латентный период сокращения мышц слишком велик, чтобы предохранить ухо от воздействия резких внезапных звуков, но при длительном пребывании в условиях действия продолжительных сильных шумов сокращение мышц приобретает важную защитную роль- адаптивную.

    Сокращения мышц, особенно натягивающей барабанную перепонку, происходит также при действии нового акустического раздражителя, при глотании, жевании и зевании, при собственной речевой деятельности. Это свидетельствует о том, что мышцы среднего уха участвуют в не только в защитном акустическом рефлексе, но и также в ориентировочной реакции и реализации обратной связи от речевой системы к слуховому входу. Так, когда человек говорит или поёт, мышцы среднего уха сокращаются и низкочастотные звуки голоса подавляются, а высокочастотные проходят среднее ухо без искажений.

    Если мышцы среднего уха парализованы из-за патологического процесса, нормальное восприятие громких звуков нарушается, при этом возрастает опасность акустической травмы. Т.о, мышцы среднего уха являются защитно-приспособительным активным механизмом регуляции интенсивности внешнего стимула и повышения помехоустойчивости слуха.

    Слуховая(евстахиева)труба – соединяет барабанную полость среднего уха с носоглоткой. Она представляет собой узкий канал длиной 3,5 см. Евстахиева труба выслана мерцательным эпителием, волоски которого двигаются в направлении глотки. Функция евстахиевой трубы- уравнивание давления в среднем ухе с давлением наружной воздушной среды. Стенки евстахиевой трубы со стороны носоглотки обычно соприкасаются между собой, но при глотании расходятся в результате сокращения глоточных мышц. При этом воздух из носоглотки проходит в барабанную полость, и давление в полости среднего уха уравнивается с атмосферным. Это особенно важно, когда возникают резкие перепады давления у барабанной перепонки (при скоростном подъёме или спуске в лифте, самолёте и т.п.). В этих условиях евстахиева труба обеспечивает выравнивание давления по обе стороны барабанной перепонки, что снимает неприятные и болевые ощущения, возникающие при резких изменениях давления во внешней среде.

    Сосцевидный отросток – височной кости, расположенный позади ушной раковины. В толще сосцевидного отростка имеется множество связанных между собой воздухоносных полостей. Самая крупная полость –пещера (антрум)- сообщается с барабанной полостью среднего уха через отверстие в её задней стенке. Обе полости имеют большое значение в обеспечении резонансных свойств среднего уха.

    Внутреннее ухо- это система каналов височной кости с находящимися в ней рецепторами слуховой и вестибулярной сенсорной систем. Взаимоотношение структур внутреннего уха сложное, что оправдывает его название –лабиринт. Различают костный и перепончатый лабиринты. Костный лабиринт является как бы футляром для перепончатого лабиринта. Перепончатый лабиринт заполнен жидкостью-эндолимфой, а пространство между перепончатым лабиринтом и костным-жидкостью перилимфой. Внутреннее ухо состоит из преддверия, полукружных каналов и улитки.

    Преддверие, центральная часть лабиринта, представлено круглым и овальным перепончатыми мешочками. Круглый мешочек сообщается с улиткой, овальный – с полукружными каналами.

    Полукружные каналы- верхний, задний и наружный расположены в трёх взаимно-перпендикулярных плоскостях. Один из концов каждого канала расширенный и называется ампулой. Преддверие и полукружные каналы относятся к периферическому отделу вестибулярного (пространственного)анализатора, или органа равновесия. В мешочках преддверия -рецептором вестибулярного анализатора является отолитовый аппарат. Отолитовый рецептор состоит из волосковых и опорных клеток. Волоски клеток покрыты отолитовой мембраной, в состав которой входят шестигранной формы кристаллы-отолиты, образованные солями кальция и магния. В полукружных каналах рецептор органа равновесия состоит из волосковых (ресничных) и опорных клеток, образующих в ампуле каналов особый гребешок.

    Улитка- костная структура внутреннего уха, выполняющая функцию рецепции звука. Улитка закручена в виде спирали (костный лабиринт). Спираль образует 2.5-2.75 оборота, начинается широким основанием и заканчивается суженной верхушкой. Общая длина канала улитки примерно35 мм. Центральный костный стержень, вокруг которого закручена спираль улитки называется веретеном(модиолюс).

    В улитковом ходе расположен кортиев (спиральный)орган. Основной его функциональной частью являются слуховые клетки, заканчивающиеся чувствительными волосками и поэтому называемые волосковыми клетками.

    Роль улитки в восприятии звука и следовательно:

    · Улитка как рецепторный аппарат осуществляет преобразование акустической энергии звуковых колебаний в энергию возбуждения нервных волокон

    · В улитке осуществляется 1 этап частотного анализа действующего звука

    Т.о. в улитке производиться частотно-временной пространственный анализ звука.

    Периферический отдел слухового анализатора соединяется с центральным, или корковым, концом проводящими нервными путями, состоящими из четырёх отрезков, или невронов.

    2 вопрос . Центральный конец слухового анализатора расположен в коре верхнего отдела височной доли каждого из полушарий головного мозга (в слуховой области коры). Особенно важное значение в восприятии звуковых раздражителей имеют, поперечные височные извилины, или так называемые извилины Гешля. В продолговатом мозгу происходит частичный перекрёст нервных волокон, соединяющих периферический отдел слухового анализатора с его центральным отделом. Таким образом, корковый центр слуха одного полушария оказывается связанным с периферическими рецепторами (кортиевыми органами) обеих сторон.

    Рассмотрим классический слуховой путь. Этот восходящий специфический путь представляет собой несколько последовательных уровней. (Подробнее на семинаре и на невропатологии)

    1. Спиральный ганглий улитки

    2. Кохлеарные ядра продолговатого мозга

    3. Верхняя олива продолговатого мозга

    4. нижние бугры четверохолмия среднего мозга

    5. медиальные коленчатые тела таламуса

    6.слуховые поля височной коры головного мозга.

    Кроме классического пути были обнаружены дополнительные восходящие слуховые пути.

    Проекционный центр слуха, или ядро слухового анализатора. Располагав ся в средней трети верхней височной извилины (поле 22), преимуществен на поверхности извилины, обращенной к островку. В этом центре зак- ° чиваются волокна слухового пути, происходящие от нейронов медиальног коленчатого тела (подкорковый центр слуха) своей и преимущественно про­тивоположной сторон. В конечном счете волокна слухового пути проходят в составе слуховой лучистости, radiatio acustica .

    При поражении проекционного центра слуха с одной стороны отмеча­ется понижение слуха на оба уха, причем с противоположной стороны от очага поражения слух снижается в большей степени. Полная глухота наблю­дается только при двустороннем поражении корковых проекционных анализаторов слуха.

    Проекционный центр зрения, или ядро зрительного анализатора. Данное ядро локализуется на медиальной поверхности затылочной доли, по краям шпорной борозды (поле 17). В нем заканчиваются волокна зрительного пути со своей и противоположной сторон, происходящие от нейронов латераль­ного коленчатого тела (подкорковый центр зрения). Нейроны поля 17 вос­принимают световые раздражения, поэтому на данном поле спроецирована сетчатка.

    Одностороннее поражение проекционного центра зрения в пределах поля 17 сопровождается частичной слепотой на оба глаза, но в различных участ­ках сетчатки. Полная слепота наступает только при двустороннем пораже­нии поля 17.

    Проекционный центр обоняния, или ядро обонятельного анализатора. Рас­полагается на медиальной поверхности височной доли в коре парагип-покампальной извилины и в крючке (лимбическая область - поля А, Е). Здесь заканчиваются волокна обонятельного пути со своей и противополож­ной сторон, происходящие от нейронов обонятельного треугольника. При одностороннем поражении проекционного центра обоняния отмечается сни­жение обоняния и обонятельные галлюцинации.

    Проекционный центр вкуса, или ядро вкусового анализатора. Располагает­ся там же, где и проекционный центр обоняния, то есть в лимбической области мозга. В проекционном центре вкуса заканчиваются волокна вку­сового пути своей и противоположной сторон, происходящие от нейронов базальных ядер таламуса.

    При поражении лимбической области наблюдаются расстройства вкуса, обоняния, и появляются галлюцинации.

    Проекционный центр чувствительности от внутренних органов, или ана­ лизатор висцероцепции. Располагается в нижней трети постцентральнои и предцентральной извилин (поле 43). В корковую часть анализатора висце­роцепции поступают афферентные импульсы от гладкой мускулатуры и желез внутренних органов. В коре поля 43 заканчиваются волокна интеро-цептивного пути, происходящие от нейронов вентролатерального ядра та­ламуса, в которое информация поступает по ядерно-таламическому тракту, tr . nucleothalamicus . В проекционном центре висцероцепции анализируются главным образом болевые ощущения и афферентные импульсы от гладкой мускулатуры.

    Проекционный центр вестибулярных функций. Вестибулярный анализатор несомненно имеет свое представительство в коре полушарий большого мозга, однако сведения о его локализации неоднозначны. Принято считать, что

    проекционный центр вестибулярных функций располагается на дорсальной поверхности височной доли в области средней и нижней височных изви­лин (поля 20, 21). Определенное отношение к вестибулярному анализатору имеют также прилежащие отделы теменной и лобной долей. В коре проекци­онного центра вестибулярных функций заканчиваются волокна, происхо­дящие от нейронов центральных ядер таламуса. Поражения указанных кор­ковых центров проявляются спонтанным головокружением, ощущением неустойчивости, чувства проваливания, ощущением движения окружающих предметов и деформации их контуров.

    Завершая рассмотрение проекционных центров, следует отметить, что корковые анализаторы общей чувствительности получают афферентную информацию с противоположной стороны тела, поэтому поражение цен­тров сопровождается расстройствами определенных видов чувствительности только на противоположной стороне тела. Корковые анализаторы специ­альных видов чувствительности (слуховой, зрительной, обонятельной, вку­совой, вестибулярной) связаны с рецепторами соответствующих органов своей и противоположной сторон, поэтому полное выпадение функций дан­ных анализаторов наблюдается только при поражении соответствующих зон коры полушарий большого мозга с обеих сторон.

    Ассоциативные нервные центры. Эти центры формируются позже, чем про­екционные, причем сроки кортикализации, т. е. созревания коры головно­го мозга в данных центрах неодинаковы. Учитывая связь ассоциативных цен­тров с мыслительными процессами и словесной функцией, принято считать, что они развиваются в коре головного мозга только у человека. Некоторые исследователи допускают существование таких центров и у высших позво­ночных животных. Рассмотрим основные ассоциативные центры.

    Ассоциативный центр «стереогнозии», или ядро кожного анализатора уз­ навания предметов на ощупь. Этот центр располагается в верхней теменной дольке (поле 7). Он двусторонний: в правом полушарии - для левой кис­ти, в левом - для правой. Центр «стереогнозии» связан с проекционным центром общей чувствительности (задняя центральная извилина), из кото­рого нервные волокна проводят импульсы болевой, температурной, тактиль­ной и проприоцептивной чувствительности. Поступающие импульсы в ассоциативном корковом центре анализируются и синтезируются, в резуль­тате чего происходит узнавание ранее встречавшихся предметов. На протя­жении всей жизни центр «стереогнозии» постоянно развивается и совершен-^ ствуется. При поражении верхней теменной дольки больные теряют спо­собность с закрытыми глазами создавать общее целостное представление с предмете, т. е. не могут узнать этот предмет на ощупь. Отдельные свойства предметов, такие, как форма, объем, температура, плотность, масса, опре­деляются правильно.

    Ассоциативный центр «праксии», или анализатор целенаправленных привыч­ ных движений. Данный центр располагается в нижней теменной дольке в \ коре надкраевой извилины (поле 40), у правшей - в левом полушарии боль- I шого мозга, у левшей - в правом. У некоторых людей центр «праксии» фор-; мируется в обоих полушариях, такие люди в одинаковой мере владеют пра­вой и левой руками и называются амбидексами.

    Центр «праксии» развивается в результате многократного повторения сложных целенаправленных действий. В результате закрепления временных связей формируются привычные навыки, например, работа на пишущей

    машинке, игра на рояле, выполнение хирургических манипуляций и т.д. По мере накопления жизненного опыта центр праксии постоянно совершен­ствуется. Кора в области надкраевой извилины имеет связи с задней и пе­редней центральными извилинами.

    После осуществления синтетической и аналитической деятельности из центра «праксии» информация поступает в переднюю центральную изви­лину на пирамидные нейроны.

    Поражение центра «праксии» проявляется апраксией, т. е. утратой про­извольных, целенаправленных, приобретенных практикой движений.

    Ассоциативный центр зрения, или анализатор зрительной памяти. Этот центр располагается на дорсальной поверхности затылочной доли (поля 18- 19), у правшей - в левом полушарии, у левшей - в правом. В нем обеспечи­вается запоминание предметов по их форме, внешнему виду, цвету. Счита­ют, что нейроны поля 18 обеспечивают зрительную память, а нейроны поля 19 - ориентацию в непривычной обстановке. Поля 18 и 19 имеют много­численные ассоциативные связи с другими корковыми центрами, благода­ря чему происходит интегративное зрительное восприятие. При поражении центра зрительной памяти (поле 18) развивается зрительная агнозия. Чаще на­блюдается частичная агнозия (не узнает знакомых, свой дом, себя в зеркале). При поражении поля 19 отмечается искаженное восприятие предметов, боль­ной не узнает знакомых предметов, но он их видит, обходит препятствия.

    Нервной системе человека присущи специфические центры. Это центры второй сигнальной системы - центры, обеспечивающие способность обще­ния между людьми посредством членораздельной человеческой речи. Чело­веческая речь может воспроизводиться в виде исполнения членораздельных звуков («артикуляция») и изображения письменных знаков («графика»). Соответственно в коре головного мозга формируются ассоциативные речевые центры (акустический и оптический центры речи, центр артикуляции и графический центр речи). Названные ассоциативные речевые центры закла­дываются вблизи соответствующих проекционных центров. Они развиваются в определенной последовательности, начиная с первых месяцев после рожде­ния и могут совершенствоваться до глубокой старости. Рассмотрим ассо­циативные речевые центры в порядке их формирования в головном мозге.

    Ассоциативный центр слуха, или акустический центр речи. Этот центр так­же называют центром Вернике, по фамилии немецкого невролога и психи­атра, впервые описавшего в 1874 году симптоматику поражения задней трети верхней височной извилины, в пределах которой располагается данный центр. На нейронах этого участка коры заканчиваются нервные волокна, происходящие от нейронов проекционного центра слуха (средняя треть верх­ней височной извилины). Ассоциативный центр слуха начинает формиро­ваться на втором - третьем месяцах после рождения. По мере формирова­ния центра ребенок начинает различать среди окружающих звуков члено­раздельную речь, вначале отдельные слова, а затем словосочетания и сложные предложения.

    При поражении центра Вернике у больного развивается сенсорная афазия. Это проявляется в виде утраты способности понимать свою и чужую речь, хотя больной хорошо слышит, реагирует на звуки, но ему кажется, что окружаю­щие разговаривают на незнакомом ему языке. Отсутствие слухового контроля за собственной речью приводит к нарушению построения предложений, речь становится непонятной, насыщенной бессмысленными словами и звуками.

    Однако больные с сенсорной афазией чрезвычайно словоохотливы. При по­ражении центра Вернике, поскольку он имеет прямое отношение к речеобра-зованию, страдает не только понимание слов, но и их произношение.

    Ассоциативный двигательный центр речи (речедвигательпый) , или центр артикуляции речи. Этот центр носит название центра Брока, по фамилии французского анатома и хирурга, который в 1861 году впервые продемон­стрировал на заседании Парижского антропологического общества мозг больного с очагом поражения в области задней трети нижней лобной изви­лины. Больной при жизни страдал нарушением артикуляции речи.

    Речедвигательный центр располагается в задней части нижней лобной извилины (поле 44) в непосредственной близости от проекционного цен­тра двигательных функций (предцентральная извилина). Речедвигательный центр начинает формироваться на третьем месяце после рождения. Он од­носторонний - у правшей он развивается в левом полушарии, у левшей - в правом. Информация из речедвигательного центра поступает в предцен-тральную извилину и далее по корково-ядерному пути - к мышцам языка, гортани, глотки, мышцам головы и шеи.

    При поражении речедвигательного центра возникает моторная афазия (утрата речи). Речь у таких больных замедлена, затруднена, скандирована, бессвязна, нередко характеризуется лишь отдельными звуками. Речь окру­жающих больные понимают.

    Ассоциативный оптический центр речи, или зрительный анализатор пись­ менной речи (центр лексии). Этот центр находится в угловой извилине ниж­ней теменной дольки (поле 39). Впервые данный центр описал в 1914 году Дежерин. К нейронам оптического центра речи поступают зрительные им­пульсы от нейронов проекционного центра зрения (поля 17). В центре «лек­сии» происходит анализ зрительной информации о буквах, цифрах, знаках, буквенном составе слов и понимании их смысла. Центр формируется с трех­летнего возраста, когда ребенок начинает познавать буквы, цифры и оце­нивать их звуковое значение.

    При поражении центра «лексии» наступает алексия (расстройство чте­ния). Больной видит буквы, но не понимает их смысла и, следовательно, не может прочесть текст.

    Ассоциативный центр письменных знаков, или двигательный анализатор письменных знаков (центр графин). Данный центр располагается в заднем отделе средней лобной извилины (поле 8) рядом с предцентральной изви­линой. Центр «графии» начинает формироваться на пятом - шестом году жизни ребенка. В этот центр поступает информация из центра «праксии», предназначенная для обеспечения тонких, точных движений руки, необхо­димых для написания букв, цифр, для рисования. От нейронов центра «гра­фин» аксоны направляются в среднюю часть предцентральной извилины. После переключения информация по корково-спинномозговому пути на­правляется к мышцам верхней конечности. При поражении центра «графии» теряется способность написания отдельных букв, возникает «аграфия». Та­ким образом, речевые центры имеют одностороннюю локализацию в коре полушарий большого мозга: у правшей они располагаются в левом полуша­рии, у левшей - в правом. Следует отметить, что ассоциативные речевые центры развиваются на протяжении всей жизни.

    Ассоциативный центр сочетанного поворота головы и глаз (кортикальный центр взора). Этот центр располагается в средней лобной извилине (поле 9)

    Рис. 53. Локализация функций в коре полушарий большого мозга (В. В. Турыгин, 1990). а - дорсо-латеральная поверхность; б - медиальная поверхность.

    1 - ассоциативный центр сочетанного поворота головы и глаз в противоположную сторону;

    2 - центр графии; 3 - проекционный центр двигательных функций; 4 - проекционный центр

    общей чувствительности; 5 - речедвигательный центр; 6 - проекционный центр висцероцепции;

    7 - проекционный центр слуха; 8 - проекционный центр вестибулярных функций;

    9 - ассоциативный центр слуха; 10 - центр праксии; 11 - центр стереогнозии; 12 - центр лексии;

    13 - ассоциативный центр зрения; 14 - проекционный центр обоняния;

    15 - проекционный центр вкуса; 16 - проекционный центр зрения

    кпереди от двигательного анализатора письменных знаков (центр графии). Он осуществляет регуляцию сочетанного поворота головы и глаз в проти­воположную сторону за счет импульсов, поступающих в проекционный центр двигательных функций (предцентральная извилина) от проприоцеп-торов мышц глазных яблок. Кроме того, в этот центр поступают импульсы от проекционного центра зрения (кора в области шпорной борозды - поле 17), происходящие от нейронов сетчатки глаза.

    Локализация функций в коре полушарий большого мозга представлена на рисунке 53.