Как создать ядерный реактор в домашних условиях. Ядерный реактор своими руками (1 фото)

Микроатомный реактор для бытовых нужд к сожалению создать нельзя и вот почему. Работа атомного реактора основана на цепной реакции расщепления ядер Урана-235 (²³⁵U) тепловым нейтроном: n + ²³⁵U → ¹⁴¹Ba + ⁹²Kr + γ (202.5 МэВ) + 3n. Рисунок цепной реакции расщепления приведен ниже

На рис. видно как нейтрон, попадая в ядро (²³⁵U) возбуждает его и ядро расщепляется на два осколка (¹⁴¹Ba, ⁹²Kr), γ-квант с энергией 202.5 МэВ и 3 свободных нейтрона (в среднем), которые в свою очередь могут расщепить следующие 3 ядра урана, оказавшиеся на их пути. Так в процессе каждого акта расщепления выделяется около 200 МэВ энергии или ~3 × 10⁻¹¹ Дж, что соответствует ~80 ТерраДж/кг или 2,5 миллиона раз больше, чем выделялось бы в таком же количестве горящего угля. Но как наставляет нас Мерфи: "если неприятность должна случиться, то она обязательно случается", и часть нейтронов, рожденных при расщепления, теряется в процессе цепной реакции. Нейтроны могут выйти (выскочить) из активного объёма или поглотиться примесями (например Криптоном). Отношение числа нейтронов последующего поколения к числу нейтронов в предшествующем поколении во всём объеме размножающей нейтронной среды (активной зоны ядерного реактора) называется коэффициентом размножения нейтронов, k. При k<1 цепная реакция затухает, т.к. число поглощенных нейтронов больше числа вновь образовавшихся. При k>1 почти мгновенно происходит взрыв.При k равном 1 идет управляемая стационарная цепная реакция. Коэффициент размножения нейтронов (k) наиболее чувствителен к массе и чистоте ядерного топлива (²³⁵U). В ядерной физике минимальная масса делящегося вещества, необходимая для начала самоподдерживающейся цепной реакции деления (k≥1) называется критической массой. Для Урана-235 она равна 50 кг. Это конечно не микроразмер, но и немного. Чтобы избежать ядерного взрыва и создать возможность управления цепной реакцией (коэффициентом размножения), в реакторе массу топлива надо увеличить и соответственно ввести в строй поглотители (замедлители) нейтронов. Вот именно эта инженерно-техническая оснастка реактора, с целью устойчивого управления цепной реакцией, система охлаждения и дополнительные сооружения для радиационной безопасности персонала, и требуют больших объемов.

Можно также в качестве топлива использовать Калифорний-232 с критической массой около 2.7 кг. В пределе довести реактор до размеров шара диаметром в несколько метров вероятно вполне возможно. Скорее всего так и делается наверно на атомных подводных лодках. Думаю подходить к таким реакторам должно быть весьма опасно ☠ из-за неизбежного нейтронного фона, но подробнее об этом надо спросить уже у вояк.

Калифорний не подходит в качестве ядерного топлива в виду его огромной стоимости. 1 грамм калифорния-252 стоит порядка 27 миллионов долларов. В качестве ядерного топлива широко используется только уран. Топливные элементы на основе тория и плутония пока широкого распространения не получили, но активно разрабатываются.

Относительно высокая компактность реакторов подводных лодок обеспечивается разницей в конструкции (обычно используются водо-водяные реакторы, ВВЭР/PWR), разными требованиями к ним (другие требования оп безопасности и аварийной остановке; на борту обычно не нужно много электричества, в отличие от реакторов наземных электростанций, которые только ради электричества и создавались) и применением разной степени обогащения топлива (концентрации урана-235 по отношению к концентрации урана-238). Обычно, в топливе для морских реакторов применяется уран с гораздо более высокой степенью обогащения (от 20% до 96% для американских лодок). Также в отличие от наземных электростанций, где распространено использование топлива в форме керамики (диоксида урана) в морских реакторах чаще всего применяют в качестве топлива сплавы урана с цирконием и другими металлами.

Приборы генерирующие электрический ток в результате использования энергии ядерного распада, хорошо изучены (с 1913 года) и давно освоены в производстве. В основном их используют там, где нужна относительная компактность и высокая автономность - в исследованиях космоса, подводных аппаратах, малолюдных и безлюдных технологиях. Перспективы их применения в бытовых условиях довольно скромные, помимо радиационной опасности большинство видов ядерного топлива имеют высокую токсичность и в принципе крайне небезопасны при контакте с окружающей средой. Несмотря на то, что в англоязычной литературе эти приборы именуются атомными батареями , и реакторами их называть не принято, их вполне можно считать таковыми, ведь в них идет реакция распада. При желании подобные устройства можно адаптировать для бытовых нужд, это может быть актуально для условий, например, Антарктики.

Радиоизотопные термоэлектрические генераторы давно существуют и полностью удовлетворяют вашему запросу - они компактные и достаточно мощные. Работают за счет эффекта Зеебека , движущихся частей не имеют. Если бы это не противоречило здравому смыслу, технике безопасности и уголовному кодексу, такой вот генератор можно было бы закопать где-нибудь под гаражом на даче и даже запитать от него пару лампочек и ноутбук. Пожертвовать так сказать здоровьем потомков и соседей ради сотни-другой ватт электроэнергии. Всего в России и СССР таких генераторов произведено более 1000.

Как уже ответили другие участники, перспективы миниатюризации "классических" реакторов ядерной энергетики с использованием паровых турбин для генерации электроэнергии сильно ограничены законами физики, причем основные ограничения накладывает не столько размеры реактора, сколько размеры прочего оборудования: бойлеров, трубопроводов, турбин, градирен. "Бытовых" моделей скорее всего не будет. Тем не менее достаточно компактные устройства сейчас активно разрабатываются, например перспективный реактор компании NuScale при мощности в 50 МВтэ имеет размеры всего лишь 76 на 15 дюймов, т.е. около двух метров на 40 сантиметров.

С энергетикой ядерного синтеза все гораздо более непросто и неоднозначно. С одной стороны, речь может идти только о дальней перспективе. Пока не дают энергии даже большие реакторы ядерного синтеза и речь об их практической миниатюризации просто не идет. Тем не менее ряд серьезных и еще более серьезных организаций ведут разработки компактных источников энергии на основе реакции синтеза. И если в случае с Локхид-Мартин, под словом "компактный" понимается "размером с автофургон", то, например в случае с американским агентством DARPA, которое выделило в 2009 фискальном году

почитав один специализированый блог, пообщавщись с авторомм и его сокамерниками пользователями... что могу сказать - агресивные товарищи. за огрессией я вижу плохое знание элементарных физических процессов, но да бог с ними.

хочется поговорить немного о термоядерном синтезе, как я уже отмечал существует энегия связи т.е. энергия связанного состояния т.е. если что-то целое поломать, то в поломаном сотоянии это весит тяжелее чем в целом. так как дядя Алберт установил связь между массой и энергией можно оценить сколько усилий нужно затратить на слом, просто взвещивая "осколки" и сравнивая с весом свзанного состояния.

надо сказть что это величина исчезающи мала и горить об энерги связи скажем расколотого и целого кирпича особого смысла в повседневной жизни нет.

что же касается ядерной энергетики то можно назвать два вида реакций с выделением энергии - это "развал" тяжелых ядер на более легкие и наоборот слиние легких ядер в нечто тяжелое. нас конечно интересут реакции идущие с выделением энергии.

что же вспомним наше наше недавнее прошлое.

как запустить термоядерную реакцию на коленке? да элементарно. нам нужны только компонены реакции, глубокий вакуум и высокое напряжение.

ведь ионизировать газ можно целой кучей способов. самы простой - создать необходимую напряженность электрического поля. я не буду здесь подробно описывать конструкцию благо и описывать особо нечего - это в общем-то два шарика один в другом, внутренний делают из тугоплавкой проволоки. между шариками создают большую разность потенциалов - все. если в шарике (внешнем) напримере пары детерия все пойдет как по маслу. т.е. основным компонентом видится тяжелая вода. она легко добывается. процесс не быстрый. суть сводится к тому, что изотопы дейтерия имеют чуть разные физические свойства в сравнии с обычным водородом. и просто испаряя и замораживая воду можно "надыбать немного дейтерия". может возможны и другие более быстрые варианты сепарации.

кстаи напряжение нужно довольно большое - десятки киловолт я слышал про значения 40 кВ. все просто и элементарно. можно подпихнуть гуглу ключ типа "термоядерный реактор своими руками", можно пойти в ютуб и забить в местный поисковик слово fusor.

все просто и элементарно.

возникает вопрос почему никто не развивает данный тип реакторов? мировая закулиса мешает али еще что?

ответ простой - плазма не удерживается. т.е. даже если ионам удалось преодалеть кулоновский барьер и реакция произошла, что кстати видно по детектору нейтронов, то на этом в общем-то все. современные реакторы работают иначе - они представляют из себя ловушку в которой находится плазма, плазму необходимо зажечь, а дальше реакция выходит на самоподдержку без подвода энергии из вне. плазму кстати все еще надо удерживать:)

эта "замануха" тащет человечество за нос не одно десятилетие, суля ему решение многих энергетических проблем, но удержание плазмы процесс кропотливый и творческий, и не решенный до конца. дай бог ITER достроят и явят миру демонстрацию термоядерной энергетики. есть некоторые основния для оптимизма, но лично я отношусь скептичеески. даже если все получится и все будет работать - построить такую установку в "одно лицо" в ряд ли выйдет. сответсвенно это поиск новых режимов плазмы, новых методов удержания и т. п. все что позволит снизить стоимость установки.

сейчас снова заговорили об ловушках открытого типа - это более дешевый вариант, а новые знания позволили удерживать плазму значительно дольше чем раньше, однако до практической пригодности результатов экспериментов говорить не приходится.

если вы жить не можите без потока нейтронов, то вам просто необходимо собрать fusor, если же вы ищите какой-то практической пользы, то вам не надо этого делать.

к тому же я думаю развитие алтернативной энергетики тоже нельзя сбрасывать со счетов. есть очень дешевые и эфективные методы строительства сверхдальных линий энергопередачи, об одном таком методе , рост кпд солнечных модулей, о чем тоже я писал, развитие систем сохранения энегии. не знаю миром правяят деньги, конечно идея "термояда" такая романтическо-экзотичекая-футуристическая, но в жизни как правило верх берет рационализм.

1. Свободнопоршневой двигатель Стирлинга работает от нагревания «атомным паром» 2. Индукционный генератор дает около 2 Вт электроэнергии для питания лампы накаливания 3. Характерное голубое свечение — это черенковское излучение электронов, выбитых из атомов гамма-квантами. Может служить в качестве отличного ночника!


Для детей от 14 лет Юный исследователь сможет самостоятельно собрать пусть и маленький, но настоящий ядерный реактор, узнать, что такое мгновенные и запаздывающие нейтроны, и увидеть динамику разгона и торможения цепной ядерной реакции. Несколько простых опытов с гамма-спектрометром позволят разобраться с наработкой различных продуктов деления и поэкспериментировать с воспроизводством топлива из модного ныне тория (кусочек сульфида тория-232 прилагается). Входящая в комплект книга «Основы ядерной физики для самых маленьких» содержит описание более 300 опытов с собранным реактором, так что простор для творчества огромен


Исторический прототип Набор Atomic Energy Lab (1951) давал возможность школьникам приобщиться к самой передовой области науки и технологии. Электроскоп, камера Вильсона и счетчик Гейгера-Мюллера позволяли провести множество интереснейших опытов. Но, конечно, не настолько интересных, как сборка действующего реактора из российского набора «Настольная АЭС»!

В 1950-х годах, с появлением атомных реакторов, перед человечеством, казалось бы, замаячили блестящие перспективы решения всех энергетических проблем. Инженеры-энергетики проектировали атомные электростанции, судостроители — атомные электроходы, и даже автоконструкторы решили присоединиться к празднику и использовать «мирный атом». В обществе возник «атомный бум», и промышленности стало не хватать квалифицированных специалистов. Требовался приток новых кадров, и была развернута серьезная образовательная компания не только среди студентов университетов, но и среди школьников. Например, A.C. Gilbert Company выпустила в 1951 году детский набор Atomic Energy Lab, содержащий несколько небольших радиоактивных источников, необходимые приборы, а также образцы урановой руды. Этот «наисовременнейший научный набор», как было написано на коробке, позволял «юным исследователям провести более 150 захватывающих научных экспериментов».

Кадры решают все

За прошедшие полвека ученые получили несколько горьких уроков и научились строить надежные и безопасные реакторы. И хотя сейчас в этой области наблюдается спад, вызванный недавней аварией на Фукусиме, вскоре он вновь сменится подъемом, и АЭС по‑прежнему будут рассматриваться как чрезвычайно перспективный способ получения чистой, надежной и безопасной энергии. Но уже сейчас в России чувствуется дефицит кадров, как ив 1950-х. Чтобы привлечь школьников и повысить интерес к атомной энергетике, Научно-производственное предприятие (НПП) «Экоатомконверсия», взяв пример с A.C. Gilbert Company, выпустила образовательный набор для детей от 14 лет. Разумеется, наука за эти полвека не стояла на месте, поэтому, в отличие от своего исторического прототипа, современный набор позволяет получить намного более интересный результат, а именно — собрать на столе самый настоящий макет атомной электростанции. Разумеется, действующий.

Грамотность с пеленок

«Наша компания родом из Обнинска- города, где атомная энергия знакома и привычна людям чуть ли не с детского сада, — объясняет «ПМ» научный руководитель НПП «Экоатомконверсия» Андрей Выхаданко. — И все понимают, что бояться ее совершенно не надо. Ведь по‑настоящему страшна лишь неизвестная опасность. Поэтому мы и решили выпустить этот набор для школьников, который позволит им вдоволь поэкспериментировать и изучить принципы работы атомных реакторов, не подвергая себя и окружающих серьезному риску. Как известно, знания, полученные в детстве, самые прочные, так что выпуском этого набора мы надеемся значительно понизить вероятность повторения Чернобыля или

Фукусимы в будущем».

Ненужный плутоний

За годы работы множества АЭС скопились тонны так называемого реакторного плутония. Он состоит в основном из оружейного Pu-239, содержащего около 20% примеси других изотопов, в первую очередь Pu-240. Это делает реакторный плутоний абсолютно непригодным для создания ядерных бомб. Отделение примеси оказывается весьма сложным, так как разница масс между 239-м и 240-м изотопами — всего 0,4%. Изготовление ядерного топлива с добавкой реакторного плутония оказалось технологически сложным и экономически невыгодным, так что этот материал остался не у дел. Именно «бросовый» плутоний и использован в «Наборе юного атомщика», разработанном НПП «Экоатомконверсия».

Как известно, для начала цепной реакции деления ядерное топливо должно иметь определенную критическую массу. Для шара из оружейного урана-235 она составляет 50 кг, из плутония-239 — только 10. Оболочка из отражателя нейтронов, например бериллия, может снизить критическую массу в несколько раз. А использование замедлителя, как в реакторах на тепловых нейтронах, снизит критическую массу более чем в десять раз, до нескольких килограммов высокообогащенного U-235. Критическая масса Pu-239 и вовсе составит сотни граммов, и именно такой сверхкомпактный реактор, умещающийся на столе, разработали в «Экоатомконверсии».

Что в сундучке

Упаковка набора скромно оформлена в черно-белых тонах, и лишь неяркие трехсегментные значки радиоактивности несколько выделяются на общем фоне. «Никакой опасности на самом деле нет, — говорит Андрей, указывая на слова «Совершенно безопасно!», написанные на коробке. — Но таковы требования официальных инстанций». Коробка тяжеленная, что неудивительно: в ней находится герметичный транспортировочный свинцовый контейнер с тепловыделяющей сборкой (ТВС) из шести плутониевых стержней с циркониевой оболочкой. Помимо этого набор включает внешний корпус реактора из термостойкого стекла с химической закалкой, крышку корпуса со стеклянным окном и гермовводами, корпус активной зоны из нержавеющей стали, подставку под реактор, управляющий стержень-поглотитель из карбида бора. Электрическая часть реактора представлена свободнопоршневым двигателем Стирлинга с соединительными полимерными трубками, маленькой лампой накаливания и проводами. В комплект также входят килограммовый пакет с порошком борной кислоты, пара защитных костюмов с респираторами и гамма-спектрометр со встроенным гелиевым детектором нейтронов.

Постройка АЭС

Сборка действующего макета АЭС по прилагаемому руководству в картинках очень проста и занимает менее получаса. Надев стильный защитный костюм (он нужен только на время сборки), вскрываем герметичную упаковку с ТВС. Затем вставляем сборку внутрь корпуса реактора, накрываем корпусом активной зоны. Под конец защелкиваем сверху крышку с гермовводами. В центральный нужно вставить до конца стержень-поглотитель, а через любой из двух других заполнить активную зону дистиллированной водой до черты на корпусе. После заполнения к гермовводам подключаются трубки для пара и конденсата, проходящие через теплообменник двигателя Стирлинга. Сама АЭС на этом закончена и готова к запуску, остается лишь поместить ее на специальную подставку в аквариум, заполненный раствором борной кислоты, который отлично поглощает нейтроны и защищает юного исследователя от нейтронного облучения.

Три, два, один — пуск!

Подносим гамма-спектрометр с датчиком нейтронов вплотную к стенке аквариума: небольшая часть нейтронов, не представляющая угрозы для здоровья, все-таки выходит наружу. Медленно поднимаем регулировочный стержень до начала быстрого роста потока нейтронов, означающего запуск самоподдерживающейся ядерной реакции. Остается только дождаться выхода на нужную мощность и на 1 см по меткам вдвинуть стержень назад, чтобы скорость реакции стабилизировалась. Как только начнется кипение, в верхней части корпуса активной зоны появится прослойка пара (перфорация в корпусе не позволяет этой прослойке оголить плутониевые стержни, что могло бы привести к их перегреву). Пар по трубке идет вверх, к двигателю Стирлинга, там он конденсируется и стекает по выходной трубке вниз внутрь реактора. Разность температур между двумя концами двигателя (один нагревается паром, а другой охлаждается комнатным воздухом) преобразуется в колебания поршня-магнита, а тот, в свою очередь, наводит переменный ток в окружающей двигатель обмотке, зажигая атомный свет в руках юного исследователя и, как надеются разработчики, атомный интерес в его сердце.

Примечание редакции: данная статья опубликована в апрельском номере журнала и является первоапрельским розыгрышем.

Материалу.

Запуск первого в мире искусственного ядерного реактора

2 августа мир облетели новости из благополучной Швеции. "Мужчина собрал у себя на кухне ядерный реактор", - кричали заголовки, и перед взором падкого на сенсации обывателя представала фантастического вида установка, скрытая под переплетением труб и проводов, внутри которой происходили те самые ядерные реакции. Масла в огонь подлило и то, что на строительство своего детища швед потратил чуть менее тысячи долларов, а радиоактивные материалы для реактора якобы получил из-за рубежа.

Понятное дело, что на просторах интернета тут же началось обсуждение произошедшего. Кто-то вспомнил Андерса Брейвика, посетовав на то, что скандинавы стали попадать в новости по крайне опасным поводам; кто-то обеспокоился, не окажутся ли подобные технологии в руках террористов; а кто-то заинтересовался тем, какое практическое применение можно найти изобретению загадочного Ричарда (до сих пор известно только предполагаемое имя умельца, да и то лишь потому, что блог, в котором создатель реактора подробно отчитывался о ходе проекта, назывался "Реактор Ричарда"). Как это часто бывает, в действительности история оказалась гораздо менее фантастической, чем казалась на первый взгляд - работающий реактор Ричард так и не построил, да и вообще, похоже, всего лишь пытался повторить подвиг легендарного Радиоактивного бойскаута.

Веб-дизайнер из Нью-Йорка и Радиоактивный бойскаут

Прежде, чем перейти к истории Ричарда, следует отметить два важных факта. Во-первых, домашний ядерный реактор - не такая уж большая редкость по нынешним временам. Например, в июне 2010 года некто Марк Саппс, известный преимущественно как веб-дизайнер для дома "Гуччи", стал 38-м частным лицом (среди этих энтузиастов, у которых имеется собственный сайт, есть, например, 15-летний школьник из Мичигана), осуществившим у себя дома реакцию ядерного синтеза (Ричард, напомним, интересовался распадом). Установка Саппса (на которую он, к слову, потратил около 40 тысяч долларов) потребляет энергии больше, чем производит. Вместе с тем из истории с веб-дизайнером можно составить общее представление о доступности ядерных технологий в современном мире.

Во-вторых, Ричард явно пошел по стопам 17-летнего американского школьника Дэвида Кана - технологии обоих физиков-энтузиастов совпадают по множеству пунктов, включая подбор сырья в виде использованных детекторов дыма, старых часов и сеток для керосиновых ламп. Именно поэтому, прежде чем говорить о шведе, необходимо рассказать историю простого американского школьника, получившего в прессе прозвище Радиоактивный бойскаут.

В июне 1995 года в небольшой город в штате Мичиган нагрянули люди в защитных антирадиационных костюмах. Вместо того чтобы, как положено в фантастическом фильме, эвакуировать людей, они стали разбирать небольшой сарайчик на заднем дворе местной жительницы по имени Пэтти Кан. Строение распиливали на мелкие куски, которые потом осторожно укладывали в большие металлические контейнеры с характерным трилистником на желтом фоне. Оказалось, что в сарае хранились радиоактивные материалы, которые принадлежали сыну Пэтти по имени Дэвид - на тот момент 17-летнему молодому человеку.

С 12 лет Дэвид увлекался химией, а потом заинтересовался и ядерной физикой. Вероятно, именно тогда ему и пришла в голову идея построить прямо у себя дома ядерный реактор (в данном случае, в отличие от Саппса, речь идет о реакциях, при которых элементы превращаются друг в друга с испусканием элементарных частиц). Однако после одного из экспериментов, который окончился взрывом, мать запретила молодому человеку заниматься опытами в доме. Поэтому Дэвид, втайне от Пэтти, перевез лабораторию в сарай. Надо сказать, что информацию, необходимую для создания реактора, молодой Кан собирал практически по крупицам - притворяясь то студентом, работающим над докладом, то школьным учителем физики, он звонил, писал в самые разные организации, включая Комиссию по ядерной регламентации США, где молодому "учителю" дали много дельных советов. Когда теоретическая часть подготовки была завершена, молодой человек приступил к практическому осуществлению проекта.

Изначально его целью было просто провести какую-нибудь ядерную реакцию, и он решил собрать нейтронную пушку - источник направленных нейтронов. Для этого ему потребовался источник альфа-частиц (то есть частиц, состоящих из двух протонов и двух нейтронов). В качестве него выступил америций-241. Оказалось, что этот материал использовался в небольших количествах при изготовлении старых детекторов дыма - совет по извлечению материала из деталей Кану дали в одной электротехнической компании из Иллинойса. Достав америций, Кан поместил его в свинцовую камеру с маленькой дырочкой, обмотанную фольгой. Облучение алюминиевой фольги, прикрывающей отверстие, позволило получить поток нейтронов.

В качестве цели для нейтронной пушки использовался торий-232, который, как выяснилось, в большом количестве присутствует в сетках, используемых в старых (в том числе и керосиновых) лампах. При помощи лития и нехитрых химических реакций Дэвид получил достаточно чистый торий в концентрации, в 170 раз превышающей допустимую Комиссией по ядерной регламентации. Кан планировал облучать торий нейтронами, чтобы получить торий-233 (его период полураспада - чуть более 22 минут), который бы, в результате последующего распада превращался в протактиний (период полураспада - 27 дней), а затем - в уран-233. Оказалось, однако, что нейтронная пушка Дэвида выстреливала слишком мало нейтронов, и все они были слишком быстрые, что в мире ядерной физики, основанном на вероятности, не позволяло проводить нужную реакцию.

Дэвид решил усовершенствовать пушку. Для этого он стал собирать радий - радиоактивный элемент, который встречается в старых часах: краской, содержащей этот элемент, покрывали стрелки часов, светящиеся в темноте. Вместо алюминия в пушке Кан использовал бериллий, образец которого по просьбе Дэвида из школьной коллекции минералов стащил его приятель. Что выступало в качестве замедлителя нейтронов, неизвестно, но швед Ричард рекомендовал использовать парафин, графит, бор или кадмий. Как бы то ни было, но пушка Дэвида заработала. В качестве объекта для облучения выступал порошок из декоративных бус, содержащих некоторое количество урана. Как на практике выглядит подобная пушка и как, используя перечисленные материалы, можно собрать некоторое подобие реактора, подробно рассказывается в этом ролике.

Надо сказать, что Дэвид закончил плохо. Он служил во флоте, когда в начале 2000-х годов его нашли журналисты - в то время про него как раз выходила книга "Радиоактивный бойскаут". Дэвид рассказал им, что планирует посвятить свою жизнь ядерной физике. В 2007 году, однако, он был арестован при попытке украсть детекторы дыма из одного здания. После этого он оказался в тюрьме, и с этого момента его следы теряются. Надо сказать, что на фотографиях в день задержания Дэвид Кан выглядел очень неважно - многие полагают, из-за неугасшей одержимости радиоактивными материалами, которые окончательно подорвали ему здоровье.

Шведский реакторостроитель

Ричард начал вести свой блог (довольно, надо сказать, бессодержательный) в мае 2011 года, причем с самого начала объявил, что строит свой реактор просто так, ради забавы.

Далее, в течение нескольких постов он, как это принято у большинства блогеров, то есть без всяких ссылок, описывает способы получения радия, тория и америция, которыми пользовался Дэвид Кан. Есть в блоге даже упоминание о пресловутых бусинах, в которых содержится уран. При этом никаких результатов экспериментов или хотя бы изображения реактора в его блоге так и не появилось. Максимум, что там есть - это несколько моделей нейтронных пушек, одна из которых собрана в пластиковом медицинском пузырьке.

Наконец, предпоследний пост (21 мая) был посвящен тому, что Ричард попытался "сварить" америциум, радий и бериллий в кислоте, чтобы они лучше смешались (вероятно, для создания нейтронной пушки), однако это привело к взрыву. Последнее сообщение в блоге датируется 21 июля. В нем автор пишет, что был задержан полицией, а все радиоактивные материалы у него конфисковали.

Эта информация совпадает с версией, представленной в местной газете Helsingborgs Dagblad, которая и стала, судя по всему, источником сенсационной новости. По данным издания, молодой мужчина сам обратился в Комитет по ядерной энергетике с вопросом, не нарушает ли он закон, сооружая у себя на кухне ядерный реактор. Оказалось, что нарушает - именно так Ричард и очутился в полиции.

Вот такая история. Так как в течение двух месяцев Ричард ничего не писал в блоге, никаких особых успехов в построении реактора, видимо, он не достиг. Да и вообще, слишком большое сходство экспериментов Ричарда с историей Радиоактивного бойскаута заставляет усомниться в реальности предпринятой им попытки. Одно можно сказать точно уже сейчас: сенсация не состоялась.

Ядерные "чудеса" рядом с нами

Старый детектор дыма. Здесь америций

Бериллий

Из этих сеточек можно извлечь торий

Нейтронная пушка

Стрелки часов с радием

Брелок с тритием

Немного урана в бусинке

Зачем отваливать столько бабла какому нибудь ГЭСу или ТЭЦу когда можно самому себе поставлять электричество? Думаю ни для кого не секрет, что у нас в стране добывается уран. Уран это топливо для ядерного реактора. В общем если быть чуточку по настойчивее, то без особого труда можно купить таблетку урана.

Что вам понадобится:

Таблетка изотопа урана 235 и 233 толщиной 1 см
Конденсатор
Свинец
Цирконий
Турбина
Генератор электричества
Графитовые стержни
Кастрюльку 5-7 литров
Счётчик Гейгера
Легкий защитный костюм Л-1 и прогтивогаз ИП-4МК с патроном РП-7Б Желательно ещё приобрести самоспасатель УДС-15

Схема которую я опишу использовалась на Чернобыльской АЭС. Сейчас атом используют на маяках, подлодках, космических станциях. Реактор работает за счёт массового выделения пара. Изотоп урана 235 выделяет невероятное количество тепла благодаря которому мы из воды мы получаем пар. Также реактор выделяет большие дозы радиации. Реактор собрать несложно, это может даже подросток. Сразу предупреждаю шансы заболеть лучевой болезнью или получить радиоактивные ожоги при самостоятельной сборки реактора очень высоки. Поэтому инструкция только для ознакомления.

1) Для начала нужно найти место для сборки реактора. Лучше всего подойдёт дача. Желательно реактор собирать в подвале, чтобы потом его можно было закопать. Для начала нужно сделать печку для плавки свинца и циркония.

После берём кастрюльку и делаем в её крышке 3 дырки диаметром 2×0.6 и 1×5 см, и одну 5 сантиметровую делаем в дне кастрюльки. Затем обливаем кастрюльку раскалённым свинцом так, чтобы слой свинца на кастрюльке был не менее 1 см (крышку пока не трогаем).

2) Далее нам понадобится цирконий. Плавим из него четыре трубки диаметром 2×0.55 и 2×4.95 см и высотой 5-10см. Три трубки вставляем в крышку кастрюльки, и одну большую в дно В трубки 0.55 см вставляем стержни графитовые длиной чтобы доставали до дна кастрюльки.

3) Теперь соединим: нашу кастрюльку (теперь уже реактор) — турбину — генератор — переходник на постоянный ток.

У турбины 2 выхода, один идёт в конденсатор (который подключен к реактору)

Теперь одеваем защитный костюм. Кидаем таблетку урана в кастрюлю, закрываем и заливаем свинцом кастрюльку снаружи чтобы не осталось щелей.

Опускаем графитовые стержни до конца и заливаем воду в реактор.

4) Теперь очень медленно вытягиваем стержни наружу до того как вскипит вода. Температура воды должна быть не выше 180 градусов. В реакторе происходит размножение нейтронов урана поэтому и кипит вода. Пар крутит нашу турбину которая в свою очередь крутит генератор.

Суть реактора не позволить ему изменять коэффициент размножения. Если число образовавшихся свободных нейтронов равно числу нейтронов, которые вызвали деление ядер, то К=1 и каждую единицу времени выделяется одинаковое количество энергии, если К<1 то выделение энергии будет уменьшатся, а если К>1 энергия будет нарастать и произойдет то, что и произошло на Чернобыльской АЭС — ваш реактор просто взорвётся из-за давления. Регулировать этот параметр можно стержнями графита, а отслеживать с помощь специальных приборов.

5) Реактор может работать непрерывно в течении 7-8 лет, По истечению срока использования утилизировать на свалке химических отходов.