Напряженность шара теорема гаусса. Применение теоремы Гаусса для расчета электрических полей

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.

Рассмотрим поле точечного заряда $q$, найдем поток вектора напряжённости ($\overrightarrow{E}$) через замкнутую поверхность $S$. Будем считать, что заряд находится внутри поверхности. Поток вектора напряженности через любую поверхность равен количеству линий вектора напряженности, которые выходят наружу (начинаются на заряде, если $q>0$) или количеству линий $\overrightarrow{E}$входящих внутрь, если $q \[Ф_E=\frac{q}{{\varepsilon }_0}\ \left(1\right),\]

где знак потока совпадает со знаком заряда.

Теорема Остроградского - Гаусса в интегральной форме

Допустим, что внутри поверхности S находится N точечных зарядов, величины $q_1,q_2,\dots q_N.$ Из принципа суперпозиции мы знаем, что результирующая напряженность поля всех N зарядов может быть найдена как сумма напряженностей полей, которые создаются каждым из зарядов, то есть:

Следовательно, для потока системы точечных зарядов можно записать:

Используем формулу (1), получаем, что:

\[Ф_E=\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\sum\limits^N_{i=1}{q_i\ }\left(4\right).\]

Уравнение (4) значит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, которые находятся внутри данной поверхности, деленой на электрическую постоянную. Это теорема Остроградского - Гаусса в интегральной форме. Данная теорема является следствием закона Кулона. Значение данной теоремы заключается в том, что она позволяет довольно просто вычислять электрические поля при различных распределениях зарядов.

Как следствие теоремы Остроградского - Гаусса надо сказать, что поток вектора напряженности ($Ф_E$) через замкнутую поверхность в случае при котором заряды находятся вне данной поверхности, равен нулю.

В том случае, когда можно не учитывать дискретность зарядов используют понятие объемной плотности заряда ($\rho $), если заряд распределен по объему. Она определена как:

\[\rho =\frac{dq}{dV}\left(5\right),\]

где $dq$ - заряд, который можно считать точечным, $dV$ -- малый объем. (Относительно $dV$ необходимо сделать следующее замечание. Данный объем мал настолько, чтобы плотность заряда в нем можно было считать постоянной, но достаточно велик, чтобы не начала проявляться дискретность заряда). Суммарный заряд, который находится в полости, можно найти как:

\[\sum\limits^N_{i=1}{q_i\ }=\int\limits_V{\rho dV}\left(6\right).\]

В таком случае формулу (4) перепишем в виде:

\[\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(7\right).\]

Теорема Остроградского - Гаусса в дифференциальной форме

Используя формулу Остроградского - Гаусса для любого поля векторной природы, с помощью которой осуществляется переход от интегрирования по замкнутой поверхности к интегрированию по объему:

\[\oint\limits_S{\overrightarrow{a}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{a}dV\ \left(8\right),\]

где $\overrightarrow{a}-$вектор поля (в нашем случае это $\overrightarrow{E}$), $div\overrightarrow{a}=\overrightarrow{\nabla }\overrightarrow{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ -- дивергенция вектора $\overrightarrow{a}$ в точке с координатами (x,y,z), которая отображает векторное поле на скалярное. $\overrightarrow{\nabla }=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}+\frac{\partial }{\partial z}\overrightarrow{k}$ - оператор набла. (В нашем случае будет $div\overrightarrow{E}=\overrightarrow{\nabla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) -- дивергенция вектора напряженности. Следуя вышесказанному, формулу (6) перепишем как:

\[\oint\limits_S{\overrightarrow{E}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{E}dV=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(9\right).\]

Равенства в уравнении (9) выполняются для любого объема, а это осуществимо только, если функции, которые находятся в подынтегральных выражениях, равны в каждой токе пространства, то есть мы можем записать, что:

Выражение (10) -- теорема Остроградского - Гаусса в дифференциальной форме. Трактовка ее такова: заряды являются источниками электрического поля. Если $div\overrightarrow{E}>0$, то в этих точках поля (заряды положительные) мы имеем источники поля, если $div\overrightarrow{E}

Задание: Заряд равномерно распределен по объему, в этом объеме выделена кубическая поверхность, со стороной b. Она вписана в сферу. Найдите отношение потоков вектора напряженности сквозь эти поверхности.

Согласно теореме Гаусса поток ($Ф_E$) вектора напряженности $\overrightarrow{E}$ через замкнутую поверхность при равномерном распределении заряда по объему равен:

\[Ф_E=\frac{1}{{\varepsilon }_0}Q=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV=\frac{\rho }{{\varepsilon }_0}\int\limits_V{dV}=\frac{\rho V}{{\varepsilon }_0}}\left(1.1\right).\]

Следовательно, нам необходимо определить объемы куба и шара, если шар описать вокруг этого куба. Для начала, объем куба ($V_k$) если сторона его b равен:

Найдем объем шара ($V_{sh}$) по формуле:

где $D$ -- диаметр шара и (так как шар описан вокруг куба), главная диагональ куба. Следовательно, нам необходимо выразить диагональ куба через его сторону. Это легко сделать, если использовать теорему Пифагора. Для вычисления диагонали куба, например, (1,5) нам сначала необходимо найти диагональ квадрата (нижнего основания куба) (1,6). Длина диагонали (1,6) равна:

В таком случает длина диагонали (1,5) равна:

\[{D=D}_{15}=\sqrt{b^2+{(\sqrt{b^2+b^2\ \ \ })}^2}=b\sqrt{3}\ \left(1.5\right).\]

Подставим в (1.3) найденный диаметр шара, получим:

Теперь мы можем найти потоки вектора напряженности через поверхность куба, она равна:

\[Ф_{Ek}=\frac{\rho V_k}{{\varepsilon }_0}=\frac{\rho b^3}{{\varepsilon }_0}\left(1.7\right),\]

через поверхность шара:

\[Ф_{Esh}=\frac{\rho V_{sh}}{{\varepsilon }_0}=\frac{\rho }{{\varepsilon }_0}\frac{\sqrt{3}}{2}\pi b^3\ \left(1.8\right).\]

Найдем отношение $\frac{Ф_{Esh}}{Ф_{Ek}}$:

\[\frac{Ф_{Esh}}{Ф_{Ek}}=\frac{\frac{с}{\varepsilon_0}\frac{\sqrt{3}}{2} \pi b^3}{\frac{сb^3}{\varepsilon_0}}=\frac{\pi}{2}\sqrt{3}\ \approx 2,7\left(1.9\right).\]

Ответ: Поток через поверхность шара в 2,7 раза больше.

Задание: Докажите, что заряд проводника располагается на его поверхности.

Используем для доказательства теорему Гаусса. Выделим в проводнике замкнутую поверхность произвольной формы около поверхности проводника (рис.2).

Допустим, что заряды внутри проводника есть, запишем с теорему Остроградского - Гаусса для дивергенции поля имеем для любой точки поверхности S:

где $\rho -плотность\ $внутреннего заряда. Однако поля внутри проводника нет, то есть $\overrightarrow{E}=0$, следовательно, $div\overrightarrow{E}=0\to \rho =0$. Теорема Остроградского - Гаусса в дифференциальной форме локальна, то есть, она записана для точки поля, мы специальным образом точку не выбирали, следовательно, плотность заряда равна нулю в любой точке поля внутри проводника.

Определим поток напряженности электростати­ческого поля зарядов q 1 ,q 2 ,...q n в вакууме (e=1) через произвольную замкнутую поверхность, окружающую эти заряды.

Рассмотрим сначала случай сферической повер­х­ности радиусом R, окружающей один заряд +q, нахо­дящийся в ее центре (рис.1.7).

, где - есть интеграл по замкнутой поверхности сферы. Во всех точках сферы модуль вектора одинаков, а сам он направлен перпендикулярно поверхности. Следовательно . Площадь поверхности сферы равна . Отсюда следует, что

.

Полученный результат будет справедлив и для поверхности S¢ произвольной формы, так как ее пронизывает такое же количество силовых линий.

На рисунке 1.8 представлена произвольная замкнутая поверхность, охватываю­щая заряд q>0. Некоторые линии напряженности то выходят из поверхности, то вхо­дят в нее. Для всех линий напряженности число пересечений с поверхностью являет­ся нечетным.

Как отмечалось в предыдущем параграфе, линии напря­женности, выходя­щие из объема, ограниченного замкнутой поверхностью, соз­дают положительный поток Ф е; линии же, входящие в объем, создают отрицательный поток -Ф е. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммар­ного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.

Если заряд q не охватывается замкнутой поверхностью S, то количество силовых линий, входящих в данную поверх­ность и выходящих из нее, одинаково (рис.1.9). Суммарный поток вектора через такую поверхность равен нулю: Ф Е =0.

Рассмотрим самый общий случай поверхности про­извольной формы, охватывающей n зарядов. По принципу суперпозиции электростатических полей напряженность , создаваемая зарядами q 1 ,q 2 ,...q n равна векторной сумме напряженностей, создавае­мых каждым зарядом в отдельности: . Проекция вектора - результирующей на­пряженности поля на направление нормали к пло­щадке dS равна алгебраической сумме проекций всех векторов на это направле­ние: ,

Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заря­дов, охватываемых этой поверхностью, деленной на электрическую постоян­ную e 0 . Эта формулировка представляет собой теорему К.Гаусса.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .

Теорема Гаусса представляет значительный практический интерес: с ее помо­щью можно определить напряженности полей, создаваемых заряженными телами различной формы.

Теорема Гаусса устанавливает точное соотношение между потоком напряженности электрического поля через замкнутую поверхность и суммарным зарядом Q внутри этой поверхности:

где ε 0 - та же константа (электрическая постоянная), что и в законе Кулона.
Подчеркнем, что Q - это заряд, заключенный внутри той поверхности, по которой берется интеграл в левой части. При этом не существенно, как именно распределен заряд внутри поверхности; заряды вне поверхности не учитываются. (Внешний заряд может повлиять на расположение силовых линий, но не на алгебраическую сумму линий, входящих внутрь поверхности и выходящих наружу.

Прежде чем переходить к обсуждению теоремы Гаусса, заметим, что интеграл по поверхности на практике не всегда легко вычисляется, однако необходимость в этом возникает не часто, за исключением самых простых ситуаций, которые мы рассмотрим ниже

Как же связаны между собой теорема Гаусса и закон Кулона? Покажем вначале, что закон Кулона следует из теоремы Гаусса. Рассмотрим уединенный точечный заряд Q . По предположению теорема Гаусса справедлива для произвольной замкнутой поверхности. Выберем поэтому такую поверхность, с которой удобнее всего иметь дело: симметричную поверхность сферы радиусом r , в центре которой находится наш заряд Q (рис. 23.7).

Поскольку сфера (конечно, воображаемая) симметрична относительно заряда, расположенного в ее центре, напряженность электрического поля Е должна иметь одно и то же значение в любой точке сферы; кроме того, вектор Е всюду направлен наружу (или всюду внутрь) параллельно вектору dA элемента поверхности. Тогда равенство

принимает вид

(площадь сферы радиусом r равна 4πr 2). Отсюда находим

В итоге мы получили закон Кулона.

Теперь об обратном. В общем случае теорему Гаусса нельзя вывести из закона Кулона: теорема Гаусса является более общим (и более тонким) утверждением, нежели закон Кулона. Однако для некоторых частных случаев теорему Гаусса удается получить из закона Кулона; мы используем общие рассуждения относительно силовых линий. Рассмотрим для начала уединенный точечный заряд, окруженный сферической поверхностью (рис. 23.7). Согласно закону Кулона, напряженность электрического поля в точке на поверхности сферы равна

Е = (1 /4πε 0)(Q/r)

Проделав в обратном порядке аналогичные рассуждения, получим

Это и есть теорема Гаусса, и мы вывели ее для частного случая точечного заряда в центре сферической поверхности. Но что можно сказать о поверхности неправильной формы, например поверхности А 2 на рис. 23.8 . Через эту поверхность проходит то же число силовых линий, что и через сферу А 1 , но поскольку поток напряженности электрического поля через поверхность пропорционален числу проходящих через нее силовых линий, поток через А 2 равен потоку через А 1 .

Следует ожидать поэтому, что формула

справедлива для любой замкнутой поверхности, окружающей точечный заряд.

Рассмотрим, наконец, случай, когда внутри поверхности находится не единственный заряд. Для каждого заряда в отдельности

Но коль скоро полная напряженность электрического поля Е есть сумма напряженностей, обусловленных отдельными зарядами, , то

где - суммарный заряд, заключенный внутри поверхности.
Итак, эти простые рассуждения подсказывают нам, что теорема Гаусса справедлива для любого распределения электрических зарядов внутри любой замкнутой поверхности. Следует иметь в виду, однако, что поле Е не обязательно обусловлено только зарядами Q , которые находятся внутри поверхности. Например, на рис. 23.3 рассмотренном ранее, электрическое поле Е существует во всех точках поверхности, однако оно создается вовсе не зарядом внутри поверхности (здесь Q = 0). Теорема Гаусса справедлива для потока напряженности электрического поля через любую замкнутую поверхность; она утверждает, что если поток, направленный внутрь поверхности, не равен потоку, направленному наружу, то это обусловлено наличием зарядов внутри поверхности.

Теорема Гаусса справедлива для любого векторного поля, обратно пропорционального квадрату расстояния, например, для гравитационного поля. Но для полей другого типа она не будет выполняться. Допустим, например, что поле точечного заряда убывает как kQ/r ; тогда поток через сферу радиусом r определялся бы выражением

Чем больше радиус сферы, тем больше был бы поток, несмотря на то что заряд внутри сферы остается постоянным.

Применения теоремы Гаусса

Теорема Гаусса позволяет выразить связь между электрическим зарядом и напряженностью электрического поля в очень компактной и элегантной форме. С помощью этой теоремы удается легко найти напряженность поля в случае, когда распределение зарядов оказывается достаточно простым и симметричным. При этом, однако, необходимо позаботиться о надлежащем выборе поверхности интегрирования. Обычно стремятся выбрать поверхность так, чтобы напряженность электрического поля Е была постоянна по всей поверхности, или по крайней мере на определенных ее участках.

Чтобы получить эти результаты на основании закона Кулона, нам пришлось бы потрудиться, интегрируя по объему шара. Благодаря использованию теоремы Гаусса и симметрии задачи решение оказалось почти тривиальным. Это демонстрирует огромные возможности теоремы Гаусса. Однако подобное использование этой теоремы ограничено в основном случаями, когда распределение зарядов обладает высокой симметрией. В подобных ситуациях мы выбираем простую поверхность, на которой Е = const , и интеграл берется без труда. Разумеется, теорема Гаусса справедлива для любой поверхности, «простые» поверхности выбираются лишь для облегчения интегрирования.

Заключение

Поток напряженности однородного электрического поля Е через плоскую площадку А равен Ф E = Е А . Если поле неоднородно, то поток определяется интегралом Ф E = ∫Е dA .
Вектор А (или dA ) направлен перпендикулярно площадке А (или dA ); для замкнутой поверхности вектор А направлен наружу. Поток через поверхность пропорционален числу силовых линий, проходящих через эту поверхность.

Теорема Гаусса утверждает, что результирующий поток напряженности электрического поля, проходящий через замкнутую поверхность, равен суммарному заряду внутри поверхности, деленному на ε 0 :

В принципе теорему Гаусса можно использовать для определения напряженности электрического поля, создаваемого заданным распределением зарядов. Однако на практике ее применение ограничено в основном несколькими частными случаями, когда распределение зарядов имеет высокую симметрию. Истинная ценность теоремы Гаусса состоит в том, что она устанавливает в более общем и более элегантном виде, чем закон Кулона, связь между электрическим зарядом и напряженностью электрического поля. Теорема Гаусса является одним из фундаментальных уравнений электромагнитной теории.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

В ряде случаев теорема Гаусса позволяет найти напряженность электрического поля протяженных заряженных тел, не прибегая к вычислению громоздких интегралов. Обычно это относится к телам, чья геометрическая форма обладает определенными элементами симметрии (шар, цилиндр, плоскость). Рассмотрим некоторые примеры применения теоремы Гаусса для расчета напряженности электрических полей.

Пример 1 . Поле равномерно заряженной плоскости.

Электрическое поле, создаваемое бесконечно протяженной равномерно заряженной плоскостью, является однородным – в каждой точке пространства вне плоскости его напряженность всюду одинакова. Направлено это поле перпендикулярно к плоскости в обе стороны (рис.2.5). Поэтому для потока вектора напряженности поля через произвольно выбранную цилиндрическую поверхность, опирающуюся на элемент плоскости ΔS, можем написать: , откуда , где - поверхностная плотность заряда. Размерность в СИ: .

Таким образом, искомая напряженность электрического поля равномернозаряженной плоскости .

Пример 2 . Поле равномерно заряженной нити (цилиндра).

В данном случае электрическое поле обладает аксиальной симметрией – не зависит от азимутального угла φ и координаты z и направлено вдоль радиус-вектора (рис.2.6). Поэтому для потока вектора через выбранную цилиндрическую поверхность с осью, совпадающей с заряженной нитью, имеем: , где - элемент цилиндрической поверхности; l – длина произвольного участка нити.

С другой стороны, по теореме Гаусса этот поток равен: причем , - линейная плотность заряда нити. Отсюда находим: .

Искомая напряженность электрического поля равномерно заряженной нити : .

Пример 3 . Поле равномерно заряженного шара.



а) Металлический шар . При равновесии заряды равномерно распределяются по внешней поверхности заряженного шара (рис.2.7). Поэтому при < (внутри шара) электрическое поле отсутствует: .

Вне шара ( > ) электрическое поле, созданное равномерно распределенными по его поверхности зарядами, обладает сферической симметрией (направлено по радиальным линиям), поэтому, согласно теореме Гаусса:

.

Видим, что электрическое поле равномерно заряженного металлического шара не зависит от радиуса шара и совпадает с полем точечного заряда .

б) Диэлектрический шар .

Рассмотрим шар, с условной диэлектрической проницаемостью ε = 1, равномерно заряженный по объему с плотностью заряда (рис.2.8).

Размерность объемной плотности заряда в СИ: .

Полный заряд шара, очевидно, есть: .

Имеем по теореме Гаусса:

1) Внутри шара (r < R) : , где Δq = - заряд внутренней области шара, ограниченной выбранной сферической поверхностью радиуса r . Отсюда находим: .

2) Вне шара (r > R) : , откуда = ,

то есть вне заряженного диэлектрического шара электрическое поле такое же , как и в случае металлического шара.

На рис.2.9 показан качественный ход зависимостей E(r) для металлического и диэлектрического шаров.

металл Рис.2.9 . Зависимость E(r). диэлектрик

1.4 Теорема Гаусса. Вектор электрической индукции.

Теорема Гаусса.

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя теорему Гаусса, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность .

Рассмотрим поток вектора напряженности через сферическую поверхность радиуса r , охватывающую точечный заряд q , находящийся в ее центре

Этот результат справедлив для любой замкнутой поверхности произвольной формы ,охватывающей заряд.

Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю ,так как число линий напряженности,входящих в поверхность,равно числу линий напряженности, выходящих из нее.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов .Согласно принципу суперпозиции напряженностьполя ,создаваемого всеми зарядами, равна сумме напряженностей , создаваемых каждым зарядом в отдельности. Поэтому

Теорема Гаусса для электростатического поля в вакууме :потоквектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0 .

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .