Сокращаются ли степени при умножении. Умножение и деление чисел со степенями

I. Произведение степеней с одинаковыми основаниями.

Произведение двух степеней с одинаковыми основаниями всегда можно представить в виде степени с основанием х.

По определению степени х 7 есть произведение семи множителей, каждый из которых равен х, а х 9 – произведение девяти таких же множителей. Следовательно, х 7 · х 9 равно произведению 7 + 9 множителей. Каждый из которых равен х, то есть

х 7 · х 9 = х 7+9 = х 16

Получается, если основание степени а – произвольное число, а m и n – любые натуральные числа, то верно равенство:

a m · a n = a m + n

Это равенство выражает одно из свойств степени.

Произведение двух степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным сумме показателей этих степеней.

Это свойство имеет место и в случаях, когда число множителей больше двух.

Например, в случае трёх множителей имеем:

a m · a n · a k = (a m · a n)a k = a m+n · a k = a m+n+k

При выполнении преобразований удобно пользоваться правилом: при умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

Рассмотрим примеры.

Пример 1.

х 6 · х 5 = х 6+5 = х 11

Пример 2.

а 7 · а -8 = а -1

Пример 3.

6 1.7 · 6 - 0.9 = 6 1.7+(- 0.9) = 6 1.7 - 0.9 = 6 0.8

II. Частное степеней с одинаковыми основаниями.

Частное двух степеней с одинаковыми показателями всегда можно представить в виде степени с тем же основанием.

Рассмотрим примеры.

Пример 1 . Частное х 17: х 5 можно представить виде степени с основанием х:

х 17: х 5 = х 12 ,

так как по определению частного и на основании свойства степени х 5 · х 12 = х 17 . Показатель степени частного (число 12) равен разности показателей делимого и делителя (17 – 5):

х 17: х 5 = х 17-5

Пример 2.

8 16: 8 12 = 8 16-12 = 8 4

Пример 3.

а -8: а 6 = а -8-6 = а -14

Пример 4.

b 5: b -4 = b 5-(-4) = b 9

Пример 5.

9 1.5: 9 - 0.5 = 9 1.5 - (- 0.5) = 9 1.5 + 0.5 = 9 2

При выполнении преобразований удобно пользоваться правилом: при делении степеней с одинаковыми основаниями основания оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Пример 6.

а 4: а 4 = а 4-4 = а 0

Значение выражения а 0 при всяком а ≠ 0 равно 1.

III. Возведение степени в степень.

Пусть требуется седьмую степень выражения а 2 представить в виде степени с основанием а.

По определению степени (а 2) 7 есть произведение семи множителей, каждый из которых равен а 2 , то есть

(а 2) 7 = а 2 · а 2 · а 2 × а 2 · а 2 · а 2 · а 2 .

Применяя свойство степени, получим:

а 2 · а 2 · а 2 · а 2 · а 2 · а 2 · а 2 = а 2+2+2+2+2+2+2 = a 2·7 .

Получается, (а 2) 7 = а 2·7 = а 14 .

При возведении степени в степень основание оставляют тем же, а показатели перемножают:

(а m) n = а mn .

Рассмотрим примеры.

Пример 1.

(4 3) 4 = 4 3·4 = 4 12

Пример 2.

((-2) 2) 5 = (-2) 10 = 1024

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Операции со степенями и корнями. Степень с отрицательным ,

    нулевым и дробным показателем. О выражениях, не имеющих смысла.

    Операции со степенями.

    1. При умножении степеней с одинаковым основанием их показатели складываются :

    a m · a n = a m + n .

    2. При делении степеней с одинаковым основанием их показатели вычитаются .

    3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

    ( abc … ) n = a n · b n · c n

    4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

    ( a / b ) n = a n / b n .

    5. При возведении степени в степень их показатели перемножаются:

    (a m ) n = a m n .

    Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

    П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

    1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению корней делимого и делителя:

    3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

    5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

    Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

    Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

    П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .

    Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

    Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

    П р и м е р ы. 2 0 = 1, (5) 0 = 1, (3 / 5) 0 = 1.

    Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

    О выражениях, не имеющих смысла. Есть несколько таких выражений. любое число.

    В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

    Случай 3.


    0 0 - любое число.

    Действительно,


    Р е ш е н и е. Рассмотрим три основных случая:

    1) x = 0 это значение не удовлетворяет данному уравнению

    (Почему?).

    2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

    что x – любое число; но принимая во внимание, что в

    Нашем случае x > 0 , ответом является x > 0 ;

    3) при x < 0 получаем: – x / x = 1, т. e . –1 = 1, следовательно,

    В этом случае нет решения.

    Таким образом, x > 0.

    Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

    В алгебре найти произведение степеней можно в двух случаях:

    1) если степени имеют одинаковые основания;

    2) если степени имеют одинаковые показатели.

    При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

    При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

    Рассмотрим, как умножать степени, на конкретных примерах.

    Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

    При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

    В выражениях возведение в степень выполняется в первую очередь.

    Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

    www.algebraclass.ru

    Сложение, вычитание, умножение, и деление степеней

    Сложение и вычитание степеней

    Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

    Так, сумма a 3 и b 2 есть a 3 + b 2 .
    Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

    Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

    Так, сумма 2a 2 и 3a 2 равна 5a 2 .

    Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

    Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

    Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

    Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

    Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

    Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

    Или:
    2a 4 — (-6a 4) = 8a 4
    3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
    5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

    Умножение степеней

    Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

    Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

    Или:
    x -3 ⋅ a m = a m x -3
    3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
    a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

    Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
    Выражение примет вид: a 5 b 5 y 3 .

    Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

    Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

    Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

    Так, a n .a m = a m+n .

    Для a n , a берётся как множитель столько раз, сколько равна степень n;

    И a m , берётся как множитель столько раз, сколько равна степень m;

    Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

    Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

    Или:
    4a n ⋅ 2a n = 8a 2n
    b 2 y 3 ⋅ b 4 y = b 6 y 4
    (b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

    Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
    Ответ: x 4 — y 4 .
    Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

    Это правило справедливо и для чисел, показатели степени которых — отрицательные .

    1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

    2. y -n .y -m = y -n-m .

    3. a -n .a m = a m-n .

    Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

    Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

    Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

    Так, (a — y).(a + y) = a 2 — y 2 .
    (a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
    (a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

    Деление степеней

    Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

    Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

    Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
    a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
    любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

    При делении степеней с одинаковым основанием их показатели вычитаются. .

    Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

    И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

    Или:
    y 2m: y m = y m
    8a n+m: 4a m = 2a n
    12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

    Правило также справедливо и для чисел с отрицательными значениями степеней.
    Результат деления a -5 на a -3 , равен a -2 .
    Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

    h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

    Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

    Примеры решения примеров с дробями, содержащими числа со степенями

    1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

    2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

    3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
    a 2 .a -4 есть a -2 первый числитель.
    a 3 .a -3 есть a 0 = 1, второй числитель.
    a 3 .a -4 есть a -1 , общий числитель.
    После упрощения: a -2 /a -1 и 1/a -1 .

    4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
    Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

    5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

    6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

    7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

    8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

    Свойства степени

    Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

    Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

    Свойство № 1
    Произведение степеней

    При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

    a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

    Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

    11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
    Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    Ответ: t = 3 4 = 81

    Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

      Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    Пример. Найти значение выражения, используя свойства степени.

    2 11 − 5 = 2 6 = 64

    Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

    Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

    Свойство № 3
    Возведение степени в степень

    При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

    (a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.


    Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

    (a n · b n)= (a · b) n

    То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1
  • В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

    Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

    Пример возведения в степень десятичной дроби.

    4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

    Свойства 5
    Степень частного (дроби)

    Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

    (a: b) n = a n: b n , где « a », « b » - любые рациональные числа, b ≠ 0, n - любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5: 3) 12 = 5 12: 3 12
  • Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Степени и корни

    Операции со степенями и корнями. Степень с отрицательным ,

    нулевым и дробным показателем. О выражениях, не имеющих смысла.

    Операции со степенями.

    1. При умножении степеней с одинаковым основанием их показатели складываются:

    a m · a n = a m + n .

    2. При делении степеней с одинаковым основанием их показатели вычитаются .

    3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

    4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

    (a / b ) n = a n / b n .

    5. При возведении степени в степень их показатели перемножаются:

    Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

    П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

    1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению корней делимого и делителя:

    3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

    5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

    Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

    Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

    П р и м е р. a 4: a 7 = a 4 — 7 = a — 3 .

    Если мы хотим, чтобы формула a m : a n = a m n была справедлива при m = n , нам необходимо определение нулевой степени.

    Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

    П р и м е р ы. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

    Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а:

    О выражениях, не имеющих смысла. Есть несколько таких выражений.

    где a ≠ 0 , не существует.

    В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0

    любое число.

    В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

    0 0 — любое число.

    Р е ш е н и е. Рассмотрим три основных случая:

    1) x = 0 это значение не удовлетворяет данному уравнению

    2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

    что x – любое число; но принимая во внимание, что в

    нашем случае x > 0 , ответом является x > 0 ;

    Правила умножения степеней с разным основанием

    СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

    СТЕПЕННАЯ ФУНКЦИЯ IV

    § 69. Умножение и деление степеней с одинаковыми основаниями

    Теорема 1. Чтобы перемножить степени с одинаковыми основаниями, достаточно показатели степеней сложить, а основание оставить прежним , то есть

    Доказательство. По определению степени

    2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.

    Мы рассмотрели произведение двух степеней. На самом же деле доказанное свойство верно для любого числа степеней с одинаковыми основаниями.

    Теорема 2. Чтобы разделить степени с одинаковыми основаниями, когда показатель делимого больше показателя делителя, достаточно из показателя делимого вычесть показатель делителя, а основание оставить прежним, то есть при т > п

    (a =/= 0)

    Доказательство. Напомним, что частным от деления одного числа на другое называется число, которое при умножении на делитель дает делимое. Поэтому доказать формулу , где a =/= 0, это все равно, что доказать формулу

    Если т > п , то число т - п будет натуральным; следовательно, по теореме 1

    Теорема 2 доказана.

    Следует обратить внимание на то, что формула

    доказана нами лишь в предположении, что т > п . Поэтому из доказанного пока нельзя делать, например, таких выводов:

    К тому же степени с отрицательными показателями нами еще не рассматривались и мы пока что не знаем, какой смысл можно придать выражению 3 - 2 .

    Теорема 3. Чтобы возвести степень в степень, достаточно перемножить показатели, оставив основание степени прежним , то есть

    Доказательство. Используя определение степени и теорему 1 этого параграфа, получаем:

    что и требовалось доказать.

    Например, (2 3) 2 = 2 6 = 64;

    518 (Устно.) Определить х из уравнений:

    1) 2 2 2 2 3 2 4 2 5 2 6 = 2 x ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 x ;

    2) 3 3 3 3 5 3 7 3 9 = 3 x ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 x .

    519. (У с т н о.) Упростить:

    520. (У с т н о.) Упростить:

    521. Данные выражения представить в виде степеней с одинаковыми основаниями:

    1) 32 и 64; 3) 8 5 и 16 3 ; 5) 4 100 и 32 50 ;

    2) -1000 и 100; 4) -27 и -243; 6) 81 75 8 200 и 3 600 4 150 .


    После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

    Навигация по странице.

    Свойства степеней с натуральными показателями

    По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

    1. основное свойство степени a m ·a n =a m+n , его обобщение ;
    2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
    3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
    4. свойство частного в натуральной степени (a:b) n =a n:b n ;
    5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
    6. сравнение степени с нулем:
      • если a>0 , то a n >0 для любого натурального n ;
      • если a=0 , то a n =0 ;
      • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
    7. если a и b – положительные числа и a
    8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

    Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

    Теперь рассмотрим каждое из них подробно.

      Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

      Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

      Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

      Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

      Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

      Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

      Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

      Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

      Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

      Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

      Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

      Приведем пример: .

      Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

      Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

      Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

      Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

      Запишем это свойство на примере конкретных чисел: .

      Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

      Например, (5 2) 3 =5 2·3 =5 6 .

      Доказательством свойства степени в степени является следующая цепочка равенств: .

      Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

      Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

      Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

      Для начала обоснуем, что a n >0 при любом a>0 .

      Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

      Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

      Переходим к отрицательным основаниям степени.

      Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

      Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

      Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

      Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

      Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

      Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

      Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

    Свойства степеней с целыми показателями

    Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

    Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

    Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

    1. a m ·a n =a m+n ;
    2. a m:a n =a m−n ;
    3. (a·b) n =a n ·b n ;
    4. (a:b) n =a n:b n ;
    5. (a m) n =a m·n ;
    6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
    7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

    При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

    Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

    Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

    Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

    Аналогично .

    И .

    По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

    В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

    Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

    Свойства степеней с рациональными показателями

    Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

    Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

    По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

    Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

    По схожим принципам доказываются и остальные равенства:

    Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

    Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

    Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

    Свойства степеней с иррациональными показателями

    Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

    1. a p ·a q =a p+q ;
    2. a p:a q =a p−q ;
    3. (a·b) p =a p ·b p ;
    4. (a:b) p =a p:b p ;
    5. (a p) q =a p·q ;
    6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
    7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

    Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

    Список литературы.

    • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
    • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
    • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
    • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
    • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
    • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).