Что такое рациональное и иррациональное число. Числа

Иррациональные числа известны людям с глубокой древности. Еще за несколько веков до нашей эры индийский математик Манава выяснил, что квадратные корни некоторых чисел (например, 2) невозможно выразить явно.

Данная статья является своего рода вводным уроком в тему "Иррациональные числа". Приведем определение и примеры иррациональных чисел с пояснением, а также выясним, как определить, является ли данное число иррациональным.

Yandex.RTB R-A-339285-1

Иррациональные числа. Определение

Само название "иррациональные числа" как бы подсказывает нам определение. Иррациональное число - это действительное число, которое не является рациональным. Другими словами, такое число нельзя представить в виде дроби m n , где m - целое, а n - натуральное число.

Определение. Иррациональные числа

Иррациональные числа - это такие числа, которые в десятичной форме записи представляют собой бесконечные непериодические десятичные дроби.


Материал этой статьи представляет собой начальную информацию про иррациональные числа . Сначала мы дадим определение иррациональных чисел и разъясним его. Дальше приведем примеры иррациональных чисел. Наконец, рассмотрим некоторые подходы к выяснению, является ли заданное число иррациональным или нет.

Навигация по странице.

Определение и примеры иррациональных чисел

При изучении десятичных дробей мы отдельно рассмотрели бесконечные непериодические десятичные дроби. Такие дроби возникают при десятичном измерении длин отрезков, несоизмеримых с единичным отрезком. Также мы отметили, что бесконечные непериодические десятичные дроби не могут быть переведены в обыкновенные дроби (смотрите перевод обыкновенных дробей в десятичные и обратно), следовательно, эти числа не являются рациональными числами , они представляют так называемые иррациональные числа.

Так мы подошли к определению иррациональных чисел .

Определение.

Числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби, называются иррациональными числами .

Озвученное определение позволяет привести примеры иррациональных чисел . Например, бесконечная непериодическая десятичная дробь 4,10110011100011110000… (количество единиц и нулей каждый раз увеличивается на одну) является иррациональным числом. Приведем еще пример иррационального числа: −22,353335333335… (число троек, разделяющих восьмерки, каждый раз увеличивается на две).

Следует отметить, что иррациональные числа достаточно редко встречаются именно в виде бесконечных непериодических десятичных дробей. Обычно они встречаются в виде , и т.п., а также в виде специально введенных букв. Самыми известными примерами иррациональных чисел в такой записи являются арифметический квадратный корень из двух , число «пи» π=3,141592… , число e=2,718281… и золотое число .

Иррациональные числа также можно определить через действительные числа , которые объединяют рациональные и иррациональные числа.

Определение.

Иррациональные числа – это действительные числа, не являющиеся рациональными.

Является ли данное число иррациональным?

Когда число задано не в виде десятичной дроби, а в виде некоторого , корня, логарифма и т.п., то ответить на вопрос, является ли оно иррациональным, во многих случаях достаточно сложно.

Несомненно, при ответе на поставленный вопрос очень полезно знать, какие числа не являются иррациональными. Из определения иррациональных чисел следует, что иррациональными числами не являются рациональные числа. Таким образом, иррациональными числами НЕ являются:

  • конечные и бесконечные периодические десятичные дроби.

Также не является иррациональным числом любая композиция рациональных чисел, связанных знаками арифметических операций (+, −, ·, :). Это объясняется тем, что сумма, разность, произведение и частное двух рациональных чисел является рациональным числом. Например, значения выражений и являются рациональными числами. Здесь же заметим, что если в подобных выражениях среди рациональных чисел содержится одно единственное иррациональное число, то значение всего выражения будет иррациональным числом. Например, в выражении число - иррациональное, а остальные числа рациональные, следовательно - иррациональное число. Если бы было рациональным числом, то из этого следовала бы рациональность числа , а оно не является рациональным.

Если же выражение, которым задано число, содержит несколько иррациональных чисел, знаки корня, логарифмы, тригонометрические функции, числа π , e и т.п., то требуется проводить доказательство иррациональности или рациональности заданного числа в каждом конкретном случае. Однако существует ряд уже полученных результатов, которыми можно пользоваться. Перечислим основные из них.

Доказано, что корень степени k из целого числа является рациональным числом только тогда, когда число под корнем является k-ой степенью другого целого числа, в остальных случаях такой корень задает иррациональное число. Например, числа и - иррациональные, так как не существует целого числа, квадрат которого равен 7 , и не существует целого числа, возведение которого в пятую степень дает число 15 . А числа и не являются иррациональными, так как и .

Что касается логарифмов, то доказать их иррациональность иногда удается методом от противного. Для примера докажем, что log 2 3 является иррациональным числом.

Допустим, что log 2 3 рациональное число, а не иррациональное, то есть его можно представить в виде обыкновенной дроби m/n . и позволяют записать следующую цепочку равенств: . Последнее равенство невозможно, так как в его левой части нечетное число , а в правой части – четное. Так мы пришли к противоречию, значит, наше предположение оказалось неверным, и этим доказано, что log 2 3 - иррациональное число.

Заметим, что lna при любом положительном и отличном от единицы рациональном a является иррациональным числом. Например, и - иррациональные числа.

Также доказано, что число e a при любом отличном от нуля рациональном a является иррациональным, и что число π z при любом отличном от нуля целом z является иррациональным. К примеру, числа - иррациональные.

Иррациональными числами также являются тригонометрические функции sin , cos , tg и ctg при любом рациональном и отличном от нуля значении аргумента. Например, sin1 , tg(−4) , cos5,7 , являются иррациональными числами.

Существуют и другие доказанные результаты, на мы ограничимся уже перечисленными. Следует также сказать, что при доказательстве озвученных выше результатов применяется теория, связанная с алгебраическими числами и трансцендентными числами .

В заключение отметим, что не стоит делать поспешных выводов относительно иррациональности заданных чисел. К примеру, кажется очевидным, что иррациональное число в иррациональной степени есть иррациональное число. Однако это не всегда так. В качестве подтверждения озвученного факта приведем степень . Известно, что - иррациональное число, а также доказано, что - иррациональное число, но - рациональное число. Также можно привести примеры иррациональных чисел, сумма, разность, произведение и частное которых есть рациональные числа. Более того, рациональность или иррациональность чисел π+e , π−e , π·e , π π , π e и многих других до сих пор не доказана.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

И π

Таким образом, множество иррациональных чисел есть разность I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа 2 {\displaystyle {\sqrt {2}}} .

Свойства

  • Сумма двух положительных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют дедекиндовы сечения во множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя различными числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел. [ ]

Алгебраические и трансцендентные числа

Каждое иррациональное число является либо алгебраическим , либо трансцендентным . Множество алгебраических чисел является счётным множеством . Так как множество вещественных чисел несчётно, то множество иррациональных чисел несчётно.

Множество иррациональных чисел является множеством второй категории .

Возведём предполагаемое равенство в квадрат:

2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

История

Античность

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (приблизительно 750-690 года до нашей эры) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

Первое доказательство существования иррациональных чисел, а точнее существование несоизмеримых отрезков, обычно приписывается пифагорейцу Гиппасу из Метапонта (приблизительно 470 год до нашей эры). Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его, изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение так как это и есть отношение диагонали к стороне в правильном пятиугольнике.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Позже Евдокс Книдский (410 или 408 г. до н. э. - 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени - сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. Десятая книга «Начал » Евклида посвящена классификации иррациональных величин.

Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни - иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

Египетский математик Абу Камил (ок. 850 г. н. э. - ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях - в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. - 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV-XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза». (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы

Цепные дроби , тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века - в работах Лагранжа . Дирихле также внёс значительный вклад в развитие теории цепных дробей. В 1761 году Ламберт с помощю цепных дробей показал, что π {\displaystyle \pi } не является рациональным числом, а также что e x {\displaystyle e^{x}} и tg ⁡ x {\displaystyle \operatorname {tg} x} иррациональны при любом ненулевом рациональном x {\displaystyle x} . Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя - Клиффорда, показал, что π 2 {\displaystyle \pi ^{2}} иррационально, откуда иррациональность π {\displaystyle \pi } следует тривиально (рациональное число в квадрате дало бы рациональное).

Существование трансцендентных чисел было доказано Лиувиллем в 1844-1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π {\displaystyle \pi } Литература

Все рациональные числа можно представить в виде обыкновенной дроби. Это касается и целых чисел (например, 12, –6, 0), и конечных десятичных дробей (например, 0,5; –3,8921) , и бесконечных периодических десятичных дробей (например, 0,11(23); –3,(87)).

Однако бесконечные непериодические десятичные дроби представить в виде обыкновенных дробей невозможно. Они то и являются иррациональными числами (то есть нерациональными). Примером такого числа является число π, которое приблизительно равно 3,14. Однако чему оно точно равно, определить нельзя, так как после цифры 4 идет бесконечный ряд других цифр, в которых нельзя выделить повторяющиеся периоды. При этом, хотя число π нельзя точно выразить, у него есть конкретный геометрический смысл. Число π - это отношение длины любой окружности к длине ее диаметра. Таким образом иррациональные числа действительно существуют в природе, также как рациональные.

Другим примером иррациональных чисел могут служить квадратные корни из положительных чисел. Извлечение корней из одних чисел дает рациональные значения, из других - иррациональное. Например, √4 = 2, т. е. корень из 4 - это рациональное число. А вот √2, √5, √7 и многие другие дают в результате иррациональные числа, т. е. их можно извлечь лишь с приближением, округлив до определенного знака после запятой. При этом дробь получается непериодическая. То есть нельзя точно и определенно сказать, чему равен корень из этих чисел.

Так √5 - это число лежащее между числами 2 и 3, так как √4 = 2, а √9 = 3. Можно также сделать вывод, что √5 ближе к 2, чем к 3, т. к. √4 ближе к √5, чем √9 к √5. Действительно, √5 ≈ 2,23 или √5 ≈ 2,24.

Иррациональные числа получаются также в других вычислениях (а не только при извлечении корней), бывают отрицательными.

По отношению к иррациональным числам можно сказать, что какой бы единичный отрезок мы не взяли для измерения длины, выраженной таким числом, мы не сможем ее определенно измерить.

В арифметических операциях иррациональные числа могут участвовать наряду с рациональными. При этом есть ряд закономерностей. Например, если в арифметической операции участвуют только рациональные числа, то в результате получается всегда рациональное число. Если же в операции участвуют только иррациональные, то сказать однозначно, получится ли рациональное или иррациональное число, нельзя.

Например, если умножить два иррациональных числа √2 * √2, то получится 2 - это рациональное число. С другой стороны, √2 * √3 = √6 - это иррациональное число.

Если в арифметической операции участвует рациональное и иррациональное числа, то получится иррациональный результат. Например, 1 + 3,14... = 4,14... ; √17 – 4.

Почему √17 – 4 - это иррациональное число? Представим, что получится рациональное число x. Тогда √17 = x + 4. Но x + 4 - это рациональное число, т. к. мы предположили, что x рациональное. Число 4 тоже рациональное, значит x + 4 рационально. Однако рациональное число не может быть равно иррациональному √17. Поэтому предположение, что √17 – 4 дает рациональный результат неверно. Результат арифметической операции будет иррациональным.

Однако из этого правила есть исключение. Если мы умножаем иррациональное число на 0, то получится рациональное число 0.

Множество иррациональных чисел обычно обозначается заглавной латинской буквой I {\displaystyle \mathbb {I} } в полужирном начертании без заливки. Таким образом: I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } , то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Энциклопедичный YouTube

  • 1 / 5

    Иррациональными являются:

    Примеры доказательства иррациональности

    Корень из 2

    Допустим противное: 2 {\displaystyle {\sqrt {2}}} рационален , то есть представляется в виде дроби m n {\displaystyle {\frac {m}{n}}} , где m {\displaystyle m} - целое число , а n {\displaystyle n} - натуральное число .

    Возведём предполагаемое равенство в квадрат:

    2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

    История

    Античность

    Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

    Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу . Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

    Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение [ ] .

    Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.