Разложение света на цвета. Дисперсия света в природе и искусстве

) - это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Свойства и проявления

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления - минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления - максимальна.

Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

n = a + b / λ 2 + c / λ 4 {\displaystyle n=a+b/\lambda ^{2}+c/\lambda ^{4}} ,

где λ {\displaystyle \lambda } - длина волны в вакууме; a , b , c - постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Дисперсия света в природе и искусстве

  • .Радуга , чьи цвета обусловлены дисперсией, - один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться и/или подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме - довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Каждый охотник желает знать, где сидит фазан. Как мы помним, эта фраза означает последовательность цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Кто показал, что белый цвет это совокупность всех цветов, какое отношение имеет к этому радуга, красивые закаты и восходы солнца, блеск драгоценных камней? На все эти вопросы отвечает наш урок, тема которого: «Дисперсия света».

До второй половины XVII века не было полной ясности, что же такое цвет. Некоторые ученые говорили, что это свойство самого тела, некоторые заявляли, что это различные сочетания светлого и темного, тем самым путая понятия цвета и освещенности. Такой цветовой хаос царил до того времени, пока Исаак Ньютон не провел опыт по пропусканию света сквозь призму (рис. 1).

Рис. 1. Ход лучей в призме ()

Вспомним, что луч, проходящий через призму, терпит преломление при переходе из воздуха в стекло и потом еще одно преломление - из стекла в воздух. Траектория луча описывается законом преломления, а степень отклонения характеризуется показателем преломления. Формулы, описывающие эти явления:

Рис. 2. Опыт Ньютона ()

В темной комнате сквозь ставни проникает узкий пучок солнечного света, на его пути Ньютон разместил стеклянную трехгранную призму. Пучок света, проходя через призму, преломлялся в ней, и на экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал спектром (от латинского «spectrum» - «видение»). Белый цвет превратился сразу во все цвета (рис. 2). Какие же выводы сделал Ньютон?

1. Свет имеет сложную структуру (говоря современным языком - белый свет содержит электромагнитные волны разных частот).

2. Свет различного цвета отличается степенью преломляемости (характеризуется разными показателями преломления в данной среде).

3. Скорость света зависит от среды.

Эти выводы Ньютон изложил в своем знаменитом трактате «Оптика». Какова же причина такого разложения света в спектр?

Как показывал опыт Ньютона, слабее всего преломлялся красный цвет, а сильнее всего - фиолетовый. Вспомним, что степень преломления световых лучей характеризует показатель преломления n. Красный цвет от фиолетового отличается частотой, у красного частота меньше, чем у фиолетового. Раз показатель преломления становится все больше при переходе от красного конца спектра к фиолетовому, можно сделать вывод: показатель преломления стекла увеличивается с возрастанием частоты света. В этом и состоит суть явления дисперсии.

Вспомним, как показатель преломления связан со скоростью света:

n ~ ν; V ~ => ν =

n - показатель преломления

С - скорость света в вакууме

V - скорость света в среде

ν - частота света

Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле, таким образом, наибольшую скорость внутри стеклянной призмы имеет красный цвет, а наименьшую скорость - фиолетовый.

Различие скоростей света для разных цветов осуществляется только при наличии среды, естественно, в вакууме любой луч света любого цвета распространяется с одной и той же скоростью м/с. Таким образом мы выяснили, что причиной разложения белого цвета в спектр является явление дисперсии.

Дисперсия - зависимость скорости распространения света в среде от его частоты.

Открытое и исследованное Ньютоном явление дисперсии ждало своего объяснения более 200 лет, лишь в XIX веке голландским ученым Лоренсом была предложена классическая теория дисперсии.

Причина этого явления - во взаимодействии внешнего электромагнитного излучения, то есть света со средой: чем больше частота этого излучения, тем сильнее взаимодействие, а значит, тем сильнее будет отклоняться луч.

Дисперсия, о которой мы говорили, называется нормальной, то есть показатель частоты растет, если частота электромагнитного излучения растет.

В некоторых редко встречающихся средах возможна аномальная дисперсия, то есть показатель преломления среды растет, если частота падает.

Мы увидели, что каждому цвету соответствует определенная длина волны и частота. Волна, соответствующая одному и тому же цвету, в разных средах имеет одну и ту же частоту, но разные длины волн. Чаще всего, говоря о длине волны, соответствующей определенному цвету, имеют в виду длину волны в вакууме или воздухе. Свет, соответствующий каждому цвету, является монохроматическим. «Моно» - один, «хромос» - цвет.

Рис. 3. Расположение цветов в спектре по длинам волн в воздухе ()

Самый длинноволновый - это красный цвет (длина волны - от 620 до 760 нм), самый коротковолновый - фиолетовый (от 380 до 450 нм) и соответствующие частоты (рис. 3). Как видите, белого цвета в таблице нет, белый цвет - это совокупность всех цветов, этому цвету не соответствует какая-то строго определенная длина волны.

Чем же объясняются цвета тел, которые нас окружают? Объясняются они способностью тела отражать, то есть рассеивать падающее на него излучение. Например, на какое-то тело падает белый цвет, который является совокупностью всех цветов, но это тело лучше всего отражает красный цвет, а остальные цвета поглощает, то оно нам будет казаться именно красного цвета. Тело, которое лучше всего отражает синий цвет, будет казаться синего цвета и так далее. Если же тело отражает все цвета, оно в итоге будет казаться белым.

Именно дисперсией света, то есть зависимостью показателя преломления от частоты волны, объясняется прекрасное явление природы - радуга (рис. 4).

Рис. 4. Явление радуги ()

Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, дождя или тумана, парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов, в результате белый цвет разлагается в спектр, то есть происходит дисперсия, наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим дугам.

Также дисперсией объясняется и замечательная игра цвета на гранях драгоценных камней.

1. Явление дисперсии - это разложение света в спектр, обусловленное зависимостью показателя преломления от частоты электромагнитного излучения, то есть частоты света. 2. Цвет тела определяется способностью тела отражать или рассеивать ту или иную частоту электромагнитного излучения.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Какие выводы сделал Ньютон после опыта с призмой?
  2. Дать определение дисперсии.
  3. Чем определяется цвет тела?
  1. Интернет-портал B -i-o-n.ru ().
  2. Интернет-портал Sfiz.ru ().
  3. Интернет-портал Femto.com.ua ().

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Ворошнин Данил Александрович
  • Руководитель: Базыльникова Марина Александровна

Введение

Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.

В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.

Все эти явления связаны с понятием «свет» . В обыденной речи «свет» мы используем в самых разных значениях: ученье – свет, а неученье – тьма, свет мой, солнышко, скажи … В физике термин «свет» имеет гораздо более определенное значение. Опытным путем было установлено, что свет нагревает тела, на которое падает. Следовательно, он передает этим телам энергию. Мы также знаем, что одним из видов теплопередачи является излучение, следовательно, Свет – это электромагнитное излучение, воспринимаемое человеческим глазом и вызывающее зрительные ощущения. Свет обладает множественными свойствами, одним таким свойством света является – дисперсия . Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Поэтому мы выбрали тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и мы постараемся в своем проекте представить все моменты, происходящие в истории развития науки о свете и показать опыты по демонстрации дисперсии света, а так же свою экспериментальную установку, разработанную специально для наблюдения дисперсии света, которая впоследствии может быть использована на уроках физики при изучении данной темы.

Цель проекта – изучение понятия «Дисперсия света» и изготовление экспериментальной установки «Цветовой диск Ньютона».

Задачи:

  1. Изучить историю открытия И. Ньютоном явления Дисперсия света.
  2. Рассмотреть спектральный состав света.
  3. Дать понятие о дисперсии света.
  4. Подготовить эксперименты по наблюдению дисперсии света.
  5. Рассмотреть природное явление радуга.
  6. Изготовить экспериментальную установку «Цветовой диск Ньютона».

I. Теоритическая часть

1.1. Открытие Исаака Ньютона

В 1665–1667 годах Исаак Ньютон – английский физик и математик занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, даваемое объективом, по краям окрашено, данное наблюдение его очень заинтересовало, и он решил разгадать природу возникновения цветных полос. В это время в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов». Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор. Главный опыт был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов (рис. 1).

1.2. Спектральный состав света

Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).


Спектр – (от латинского «spectrum» – видение) непрерывный ряд цветных полос, получается путем разложения луча белого света на составные части (рис. 3).


Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.

Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.

1.3. Дисперсия света

Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.

Дисперсией называется явление разложения света на цвета при прохождении света через вещество.

Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.

Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред - преломлением света (рис. 4).


Закон преломления света : падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.

Если луч переходит в какую-либо среду из вакуума, то

sinα = n ,
sinβ

где n абсолютный показатель преломления второй среды.

Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.

Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

sinα = n 21 = V 1
sinβ V 2

Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.

Таким образом,

Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.

Абсолютный показатель преломления стекла n , из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).


1.4. Радуга

Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).


Радуга - это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.

Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).


Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область - в красный.

Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.

Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).


Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).


II. Практическая часть

2.1. Демонстрация экспериментов по наблюдению дисперсии света

Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.

Эксперимент №1. Получение радужного спектра на мыльных пленках

Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.

Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.


Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму

Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).


Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.



Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду

Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.



Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.



1.2. Цветовой диск Ньютона

Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).


На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).


Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).


Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.

В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).


Окраска круга при вращении желтовато-белая по двум причинам:

  1. Скорость вращения круга очень низкая по сравнению со скоростью света;
  2. Круг окрашен с резкими цветовыми переходами, если сравнивать со спектром разложения белого света.

Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.

Заключение

Окружающий нас мир играет красками: нас радует и волнует голубизна неба, зелень травы и деревьев, красное зарево заката, семицветная дуга радуги. В своем проекте мы попытались ответить на вопрос - как можно объяснить удивительное многообразие красок в природе. В целом поставленная цель об изучении такого явления как дисперсия света в итоге достигнута. Для того чтобы глубже понять такое свойство света как дисперсия, была изучена дополнительная литература по световым явлениям, были проведены эксперименты по наблюдению явления, была изготовлена установка для вращения цветового круга Ньютона с некоторой скоростью.

В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:

  1. Дисперсия – явление разложения белого света в спектр.
  2. Белый цвет имеет сложную структуру, состоящий из нескольких цветов.
  3. При падении света на границу раздела двух прозрачных сред световые лучи различной цветности преломляются по разному (наиболее сильно-фиолетовые лучи, менее других- красные).
  4. Призма не изменяет цвет, а лишь разлагает его на составные части.

Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.


Дисперсия света

Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона).

Диспе́рсия све́та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

  • Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

  • у красного цвета максимальная скорость в среде и минимальная степень преломления,
  • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

  • Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр - равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии , применяемый как название количественного соотношения, связывающего частоту и волновое число , применяется не только к электромагнитной волне , но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций - одних из аберраций оптических систем , в том числе фотографических и видео-объективов .

Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

…,

Дисперсия света в природе и искусстве

Из-за дисперсии можно наблюдать разные цвета.

  • Радуга , чьи цвета обусловлены дисперсией, - один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме - довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

См. также

Литература

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. - Изд. 4-е, сокр. - М .: Искусство, 1977.

Ссылки


Wikimedia Foundation . 2010 .

  • Главный фокус
  • Дисперсия

Смотреть что такое "Дисперсия света" в других словарях:

    ДИСПЕРСИЯ СВЕТА - зависимость преломления показателя n в ва от частоты n (длины волны l) света или зависимость фазовой скорости световых волн от их частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении его сквозь призму (см. СПЕКТРЫ… … Физическая энциклопедия

    дисперсия света - Явления, обусловленные зависимостью скорости распространения света от частоты световых колебаний. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    дисперсия света - šviesos skaida statusas T sritis radioelektronika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerteilung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Radioelektronikos terminų žodynas

    дисперсия света - šviesos dispersija statusas T sritis fizika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerlegung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Fizikos terminų žodynas

    Дисперсия света - зависимость показателя преломления n вещества от частоты ν (длины волны λ) света или зависимость фазовой скорости (См. Фазовая скорость) световых волн от частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении… … Большая советская энциклопедия

    ДИСПЕРСИЯ СВЕТА - зависимость показателя преломления п в ва от частоты света v. В обл. частот света, для к рых в во прозрачно, п возрастает с увеличением v нормальная Д. с. В обл. частот, соответствующих полосам интенсивного поглощения света в вом, п убывает с… … Большой энциклопедический политехнический словарь

    Дисперсия света - зависимость абсолютного показателя преломления вещества от длины волны света … Астрономический словарь

    Аномальная дисперсия света - Для улучшения этой статьи желательно?: Добавить иллюстрации. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставить шаблон карточку, который существ … Википедия

    ДИСПЕРСИЯ ВОЛН - зависимость фазовой скорости гармонических волн в среде от частоты их колебаний. дисперсия волн наблюдается для волн любой природы. Наличие дисперсии волн приводит к искажению формы сигнала (напр., звукового импульса) при распространении в среде … Большой Энциклопедический словарь

Задачи урока:

  • Образовательные :
    • ввести понятия спектр, дисперсия света;
    • ознакомить учащихся с историей открытия данного явления.
    • наглядно продемонстрировать процесс разложение узкого светового луча на составляющие различных цветовых оттенков.
    • выявить различия этих элементов луча света.
    • продолжить формирование научного мировоззрения учащихся.
  • Развивающие :
    • развитие внимания, образного и логического мышления, памяти при изучении данной темы.
    • стимулирование познавательной мотивации учащихся.
    • развитие критического мышления.
  • Воспитательные :
    • воспитание интереса к предмету;
    • воспитание чувства прекрасного, красоты окружающего мира.

Тип урока: урок изучения и первичного закрепления новых знаний.

Методы обучения: беседа, рассказ, объяснение, эксперимент. (Информационно-развивающий)

Требования к базовому уровню подготовки: уметь описывать и объяснять явление дисперсии.

Оборудование и материалы: компьютер, цветные карточки, плоскопараллельные пластины

План урока:

Этапы урока

Время, мин

Приемы и методы

1. Цветопись 5 мин.(перед уроком, на перемене) Выбор цветной карточки, соответствующий настроению, каждым учащимся перед уроком на перемене.
2. Мотивация 2 мин. Рассказ учителя
3. Оргмомент 3 мин. Чтение стиха учеником
4. Изучение нового материала 19 мин. Рассказ учителя. Демонстрация опытов. Беседа по вопросам. Записи в тетрадях.
5. Закрепление
Синквейн
12 мин. Консультация учителя. Наблюдение. Ответы учащихся.
Составление синквейна
6. Подведение итогов.
Цветопись
3 мин. Обобщение изученного материала.
Выбор цветной карточки, соответствующий настроению, каждым учащимся в конце урока
7. Домашнее задание 1 мин. Запись на доске. Комментарий учителя.

Перед началом урока, на перемене провести диагностику «Цветопись класса». Каждый ученик, заходя в класс, выбирает карточку с определенным цветом, соответствующий его настроению, составляется диаграмма «Цветопись класса» в начале урока.

  • Желтый цвет – хорошее
  • Оранжевый – очень хорошее
  • Красный – радостное
  • Зеленый – спокойное
  • Синий – грустное
  • Коричневый – тревожное
  • Черный – плохое
  • Белый – безразличное

Эпиграф к уроку:

Природу нельзя застигнуть неряшливой и полураздетой, она всегда прекрасна.

Р. Эмерсон (американский философ XIX в.)

ХОД УРОКА

1. Мотивация

Солнечный свет всегда был и остается для человека символом радости, вечной юности, всего хорошего, лучшего, что может быть в жизни:

«Пусть всегда будет Солнце.
Пусть всегда будет небо…», –

Такие слова есть в известной песне автор слов – Лев Ошанин.
Даже физик. Привыкший иметь дело с фактами, с точной регистрацией явлений, подчас испытывает чувство неловкости, говоря, что свет – это электромагнитные волны определенной длины волны и ничего больше.
Длина световой волны очень мала. Представьте себе среднюю морскую волну, которая увеличилась бы настолько, что заняла одна весь Атлантический океан – от Америки до Лиссабона в Европе. Длина световой волны притом же увеличении лишь ненамного превысила бы ширину страницы книги.
Вопрос :
– Откуда берутся эти электромагнитные волны?
Ответ :
– Источник их – Солнце.
Вместе с видимым излучением Солнце посылает нам тепловое излучение, инфракрасное и ультрафиолетовое. Высокая температура солнца – главная причина рождения этих электромагнитных волн.

2. Оргмомент

Формулировка темы и целей урока.

Тема нашего урока – «Дисперсия света». Сегодня нам необходимо:

  • Ввести понятие «спектр», «дисперсия света»;
  • Выявить особенности данного явления – дисперсии света;
  • Познакомиться с историей открытия данного явления.

Активизация мыслительной деятельности :

Ученик читает стихотворение

Аромат Солнца

Запах Солнца? Что за вздор!
Нет, не вздор.
В солнце звуки и мечты,
Ароматы и цветы,
Все слились в согласный хор,
Все сплелись в один узор.
Солнце пахнет травами,
Свежими купавами,
Пробужденною весной
И смолистою сосной,
Нежно-светлотканными
Ландышами пьяными,
Что победно расцвели
В остром запахе земли.
Солнце светит звонами,
Листьями зелеными,
Дышит внешним пеньем птиц,
Дышит смехом юных лиц.
Так и молви всем слепцам:
Будет вам!
Не узреть вам райских врат,
Есть у солнца аромат,
Сладко внятный только нам,
Зримый птицам и цветам!
А. Бальмонт

3. Изучение нового материала

Немного истории

Говоря об этих представлениях, следует начать с теории цветов Аристотеля (IV в. до н. э.). Аристотель утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к солнечному (белому) свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный – при наименьшем. Таким образом, цвета радуги – это сложные цвета, а основным является белый свет. Интересно, что появление стеклянных призм и первые опыты по наблюдению разложения света призмами не породили сомнений в правильности Аристотелевой теории возникновения цветов. И Хариот, и Марци оставались последователями этой теории. Этому не следует удивляться, так как на первый взгляд разложение света призмой на различные цвета, казалось бы, подтверждало представления о возникновении цвета в результате смешения света и темноты. Радужная полоска возникает как раз на переходе от теневой полосы к освещенной, т. е. на границе темноты и белого света. Из того факта, что фиолетовый луч проходит внутри призмы наибольший путь по сравнению с другими цветными лучами, немудрено сделать вывод, что фиолетовый цвет возникает при наибольшей утрате белым светом своей «белизны» при прохождении через призму. Иначе говоря, на наибольшем пути происходит и наибольшее промешивание темноты к белому свету. Ложность подобных выводов нетрудно было доказать, поставив соответствующие опыты с теми же призмами. Однако до Ньютона никто этого не сделал.

Солнечный свет имеет много тайн. Одна из них – явление дисперсии . Первым его обнаружил великий английский физик Исаак Ньютон в 1666 году , занимаясь усовершенствованием телескопа.

Дисперсия света (разложение света) – это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты).

Экспериментально дисперсия света была открыта И. Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.
Один из самых наглядных примеров дисперсии – разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе – оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

  • у красного цвета максимальная скорость в среде и минимальная степень преломления,
  • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции).

Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой, и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр – равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе. Если предмет, например лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем красной краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные же поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее лишь красные лучи, то она будет казаться почти черной.

Явление дисперсии, открытое Ньютоном, – первый шаг к пониманию природы цвета. Глубина понимания дисперсии пришла после того, как была выяснена зависимость цвета от частоты (или длины) световой волны.

Томас Юнг (1773-1829 г.г.) в 1802 году первым измерил длины волн разных цветов.

После открытия дисперсии света основной величиной, определяющей цвет света, стала длина волны. Главный цветоприемник – сетчатка глаза.

Цвет – есть ощущение, которое возникает в сетчатой оболочке глаза при её возбуждении световой волной определенной длины. Зная длину волны испущенного света и условия его распространения, можно наперед с высокой степенью точности сказать, какой цвет увидит глаз.

Может быть так, что сетчатка глаза плохо воспринимает один из основных цветов или совсем на него не реагирует, тогда у этого человека нарушается цветоощущение. Такой недостаток зрения назван дальтонизмом.

Хорошее цветоощущение очень важно для ряда профессий: моряков, летчиков, железнодорожников, хирургов, художников. Созданы специальные приборы – аномалоскопы для исследования нарушений цветового зрения.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).
Первая попытка объяснить радугу как естественное явление природы была сделана в 1611 году архиепископом Антонио Доминисом.

1637 год – научное объяснение радуги впервые дал Рене Декарт. Он объяснил радугу на основании законов преломления и отражения солнечного света в каплях дождя. Явление дисперсии еще не было открыто, – поэтому радуга Декарта оказалась белой.

Спустя 30 лет Исаак Ньютон дополнил теорию Декарта, объяснил, как преломляются цветные лучи в каплях дождя.

«Декарт повесил радугу в нужном месте на небосводе, а Ньютон расцветил её всеми красками спектра»

Американский ученый А. Фразер

Радуга – это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя. Однако далеко не все знают, как именно преломление света на капельках дождя приводит к возникновению на небосводе гигантской многоцветной дуги. Поэтому полезно подробнее остановиться на физическом объяснении этого эффектного оптического явления.

Радуга глазами внимательного наблюдателя. Прежде всего, радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Радуга возникает, когда Солнце освещает завесу дождя. По мере того как дождь стихает, а затем прекращается, радуга блекнет и постепенно исчезает. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область – в красный. Нередко над основной радугой возникает еще одна (вторичная) радуга – более широкая и размытая. Цвета во вторичной радуге чередуются в обратном порядке: от красного (крайняя внутренняя область дуги) до фиолетового (крайняя внешняя область).

Для наблюдателя, находящегося на относительно ровной земной поверхности, радуга появляется при условии, что угловая высота Солнца над горизонтом не превышает примерно 42°. Чем ниже Солнце, тем больше угловая высота вершины радуги и тем, следовательно, больше наблюдаемый участок радуги. Вторичная радуга может наблюдаться, если высота Солнца над горизонтом не превышает примерно 52.

Радуга может рассматриваться как гигантское колесо, которое как на ось, надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя.

Дисперсия является причиной хроматических аберраций – одних из аберраций оптических систем, в том числе фотографических и видео-объективов.

Дисперсия света в природе и искусстве

  • Из-за дисперсии можно наблюдать разные цвета света.
  • Радуга, чьи цвета обусловлены дисперсией, – один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметов или материалов.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме – довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Открытие дисперсии стало в истории науки весьма значительным. На надгробии ученого есть надпись с такими словами: «Здесь покоится сэр Исаак Ньютон, дворянин, который… первый с факелом математики объяснил движения планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и проявляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. …Пусть смертные радуются, что существовало такое украшение рода человеческого».

4. Закрепление

  • Ответить на вопросы по изученной теме.
  • Рубрика «Подумайте…»
  • Вопрос: почему радуга круглая?
  • Составление «Синквейна» по теме «Дисперсия»

5. Подведение итогов урока

В конце урока провести опять диагностику «Цветопись класса». Выяснить какое стало настроение в конце урока, на основе чего составляется диаграмма «Цветопись класса» и сравнивается результат, какое настроение было у учеников в начале урока и в конце.

6. Домашнее задание: §66

Литература:

  1. Мякишев Г.Я., Буховцев Б.Б. Физика: Учебник для 11 класса средней школы. – М.: Просвещение, 2006.
  2. Рымкевич А.П. Сборник задач по физике для 9-11 классов средней школы. – М.: Просвещение, 2006.
  3. Хрестоматия по физике: Учебное пособие для учащихся 8-10 классов средней школы / Под ред. Б.И. Спасского. – М.: Просвещение, 1987.
  4. Журнал «Физика в школе» № 1/1998 г.