Как исследовать график на четность. Четные и нечетные функции

. Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.
  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} . Подставьте в нее следующие значения x {\displaystyle x} :

Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
  • Скрыть Показать

    Способы задания функции

    Пусть функция задается формулой: y=2x^{2}-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5 .

    Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

    x −2 −1 0 1 2 3
    y −4 −3 −2 −1 0 1

    Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

    Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

    Четная и нечетная функция

    Функция является четной функцией , когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

    Функция является нечетной функцией , когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

    Функция является ни четной , ни нечетной и называется функцией общего вида , когда она не обладает симметрией относительно оси или начала координат.

    Исследуем на четность нижеприведенную функцию:

    f(x)=3x^{3}-7x^{7}

    D(f)=(-\infty ; +\infty) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x) .

    Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

    Периодическая функция

    Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T \neq 0 .

    Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

    Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

    f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty)

    Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

    f(x) < 0 на (-\infty; x_{1}) \cup (x_{2}; x_{3})

    Ограниченность функции

    Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A , для которого выполняется неравенство f(x) \geq A для любого x \in X .

    Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x .

    Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B , для которого выполняется неравенство f(x) \neq B для любого x \in X .

    Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1] .

    Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

    Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

    Возрастающая и убывающая функция

    О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) > y(x_{2}) .

    Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) < y(x_{2}) .

    Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

    а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

    б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

    в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

    г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x < 0

    Экстремумы функции

    Точкой минимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}) . y_{min} - обозначение функции в точке min.

    Точкой максимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x) < f(x^{0}) . y_{max} - обозначение функции в точке max.

    Необходимое условие

    Согласно теореме Ферма: f"(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_{0} , появится экстремум в этой точке.

    Достаточное условие

    1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
    2. x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0} .

    Наибольшее и наименьшее значение функции на промежутке

    Шаги вычислений:

    1. Ищется производная f"(x) ;
    2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
    3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции , а большее — наибольшим .

    Которые в той или иной степени были вам знакомы. Там же было замечено, что запас свойств функций будет постепенно пополняться. О двух новых свойствах и пойдет речь в настоящем параграфе.

    Определение 1.

    Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х).

    Определение 2.

    Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х).

    Доказать, что у = х 4 - четная функция.

    Решение. Имеем: f(х) = х 4 , f(-х) = (-х) 4 . Но (-х) 4 = х 4 . Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной.

    Аналогично можно доказать, что функции у - х 2 ,у = х 6 ,у - х 8 являются четными.

    Доказать, что у = х 3 ~ нечетная функция.

    Решение. Имеем: f(х) = х 3 , f(-х) = (-х) 3 . Но (-х) 3 = -х 3 . Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной.

    Аналогично можно доказать, что функции у = х, у = х 5 , у = х 7 являются нечетными.

    Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у - х 3 , у = х 5 , у = х 7 - нечетные функции, тогда как у = х 2 , у = х 4 , у = х 6 - четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n - натуральное число , можно сделать вывод: если n - нечетное число, то функция у = х" - нечетная; если же n - четное число, то функция у = хn - четная.

    Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х).

    Итак, функция может быть четной, нечетной, а также ни той ни другой.

    Изучение вопроса о том, является ли заданная функция четной или нечетной, обычно называют исследованием функции на четность.

    В определениях 1 и 2 речь идет о значениях функции в точках х и -х. Тем самым предполагается, что функция определена и в точке х, и в точке -х. Это значит, что точка -х принадлежит области определения функции одновременно с точкой х. Если числовое множество X вместе с каждым своим элементом х содержит и противоположный элемент -х, то X называют симметричным множеством. Скажем, (-2, 2), [-5, 5], (-оо, +оо) - симметричные множества, в то время как }